This paper describes a methodology used for propeller performance estimation, which was implemented in an in-house modular program for gas turbine performance prediction. A model based on subsonic generic propeller maps and corrected for compressibility effects, under high subsonic speeds, was proposed and implemented. Considering this methodology, it is possible to simulate conventional turboprop architectures and counter-rotating open rotor (CROR) engines in both steady-state and transient operating conditions. Two simulation scenarios are available: variable pitch angle propeller with constant speed; or variable speed propeller with constant pitch angle. The simulations results were compared with test bench data and two gas turbine performance commercial software packages were used to fulfill the model validation for conventional turboprop configurations. Furthermore, a direct drive CROR engine was simulated using a variable inlet guide vanes (VIGV) control strategy during transient operation. The model has shown to be able to provide several information about propeller-based engine performance using few input data, and a comprehensive understanding on steady-state and transient performance behavior was achieved in the obtained results.

References

1.
Hager
,
D.
, and
Vrabel
,
D.
,
1988
, “Advanced Turboprop Project,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA-SP-495
.
2.
Del Rosario
,
R.
,
Follen
,
G.
,
Wahls
,
R.
, and
Madavan
,
N.
,
2012
, “Subsonic Fixed Wing Project Overview of Technical Challenges for Energy Efficient, Environmentally Compatible Subsonic Transport Aircraft,” 50th AIAA Aerospace Science Meeting, Nashville, TN, Jan. 9–12.
3.
European Commission
,
2011
,
Flightpath 2050—Europe's Vision for Aviation
, European Commission,
Luxembourg, Europe
.
4.
Van Zante
,
D.
,
2015
, “Progress in Open Rotor Research: A U.S. Perspective,”
ASME
Paper No. GT2015-42203.
5.
Jeracki
,
R. J.
, and
Mikkelson
,
D. C.
,
1979
, “Wind Tunnel Performance of Four Energy Efficient Propellers Designed for Mach 0.8 Cruise,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA TM-79124
.
6.
Biermann
,
D.
, and
Gray
,
W. H.
,
1942
, “Wind-Tunnel Tests of Single-and Dual-Rotating Pusher Propellers Having From Three to Eight Blades,” National Advisory Committee for Aeronautics, Washington, DC, Report No.
NACA-WR-L-359
.
7.
Mikkelson
,
D. C.
,
Mitchell
,
G. A.
, and
Bober
,
L. J.
,
1984
, “Summary of Recent NASA Propeller Research,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA-TM-83733
.
8.
GE Aircraft Engines, “
1987
, “Full Scale Technology Demonstration of a Modern Counterrotating Unducted Fan Engine Concept: Design Report,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA-CR-180867
.
9.
Mitchell
,
G. A.
,
1988
, “Experimental Aerodynamic Performance of Advanced 40 deg-Swept 10-Blade Propeller Model at Mach 0.6 to 0.85,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA TM-88969
.
10.
Hughes
,
C.
, and
Gazzaniga
,
J.
,
1988
, “
Summary of Low-Speed Wind Tunnel Results of Several High-Speed Counterrotation Propeller Configurations
,”
AIAA
Paper No. AIAA-88-3149.
11.
Sullivan
,
T. J.
,
1986
, “
Aerodynamic Performance of a Scale-Model, Counter Rotating Unducted Fan
,”
ASME J. Turbomach.
,
112
(
4
), pp.
579
586
.
12.
Hoff
,
G. E.
,
1990
, “Experimental Performance and Acoustic Investigation of Modern, Counterrotating Blade Concepts,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA-CR-185158
.
13.
Hamilton Standard
,
1963
, “Generalized Method for Propeller Performance Estimation,” Hamilton Standard, Windsor Locks, CT, Standard No.
PDB 6101
.
14.
Wainauski
,
H. S.
,
Rohrbach
,
C.
, and
Wynosky
,
T.
,
1987
, “
Prop-Fan Performance Terminology
,”
SAE
Paper No. 871838.
15.
Worobel
,
R.
, and
Mayo
,
M.
,
1971
, “Advanced General Aviation Propeller Study,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA-CR-114399
.
16.
KONG
,
C.
, and
ROH
,
H.
,
2002
, “Performance Simulation of Turboprop Engine Using Simulink® Model,”
ASME
Paper No. GT2002-30516.
17.
Kong
,
C.
,
Ki
,
J.
, and
Chung
,
S.
,
2002
, “
Performance Simulation of a Turboprop Engine for Basic Trainer
,”
KSME Int. J.
,
16
(
6
), pp.
839
850
.
18.
Crainic
,
C.
,
Harvey
,
R.
, and
Thompson
,
A.
,
1997
, “
Real Time Thermodynamic Transient Model for Three Spool Turboprop Engine
,”
ASME
Paper No. 97-GT-223.
19.
Razak
,
A. M. Y.
,
2007
,
Industrial Gas Turbine. Performance and Operability
,
CRC Press
,
Boca Raton, FL
.
20.
Fletcher
,
P.
, and
Walsh
,
P. P.
,
2004
,
Gas Turbine Performance
, 2nd ed.,
Blackwell
,
Oxford, UK
.
21.
Mattingly
,
J. D.
,
1996
,
Elements of Gas Turbine Propulsion
,
McGraw-Hill
,
New York
.
22.
Saravanamuttoo
,
H. I. H.
,
Rogers
,
G. F. C.
, and
Cohen
,
H.
,
2009
,
Gas Turbine Theory
, 6th ed.,
Prentice Hall
,
Harlow, UK
.
23.
Von Miss
,
R.
,
1959
,
Theory of Flight
,
Dover Publications
,
Mineola, NY
.
24.
Farokhi
,
S.
,
2014
,
Aircraft Propulsion
, 2nd ed.,
Wiley
,
Hoboken, NJ
.
25.
Lan
,
C. T.
, and
Roskam
,
J.
,
1997
,
Airplane Aerodynamics and Performance
,
DAR Corporation
,
Lawrence, KS
.
26.
Kundu
,
A.
,
Price
,
M.
, and
Riordan
,
D.
,
2016
,
Theory and Practice of Aircraft Performance
,
Wiley
,
Chichester, UK
.
27.
Hendricks
,
E. S.
,
2011
, “Development of an Open Rotor Cycle Model in NPSS Using a Multi-Design Point Approach,”
ASME
Paper No. GT2011-46694.
28.
Hendricks
,
E.
, and
Tong
,
M.
,
2012
, “
Performance and Weight Estimates for an Advanced Open Rotor Engine
,”
AIAA
Paper No. 2012-3911.
29.
Bellocq
,
P.
,
Sethi
,
V.
,
Cerasi
,
L.
,
Ahlefelder
,
S.
,
Singh
,
R.
, and
Tantot
,
N.
,
2010
, “Advanced Open Rotor Performance Modelling for Multidisciplinary Optimization Assessments,”
ASME
Paper No. GT2010-22963.
30.
Bellocq
,
P.
,
2012
, “Multi-Disciplinary Preliminary Design Assessments of Pusher Counter-Rotating Open Rotors for Civil Aviation,”
Ph.D. thesis
, Cranfield University, Bedford, UK.
31.
Bellocq
,
P.
,
Sethi
,
V.
,
Capodanno
,
S.
,
Patin
,
A.
, and
Lucas
,
F. R.
,
2014
, “Advanced 0-D Performance Modelling of Counter Rotating Propellers for Multi-Disciplinary Preliminary Design Assessments of Open Rotors,”
ASME
Paper No. GT2014-27141.
32.
Bellocq
,
P.
,
Garmendia
,
I.
,
Sethi
,
V.
,
Patin
,
A.
,
Capodanno
,
S.
, and
Lucas
,
F. R.
,
2016
, “
Multidisciplinary Assessment of the Control of the Propellers of a Pusher Geared Open Rotor—Part I: Zero-Dimensional Performance Model for Counter-Rotating Propellers
,”
ASME J. Eng. Gas Turbines Power
,
138
(
7
), p.
072602
.
33.
Bellocq
,
P.
,
Garmendia
,
I.
,
Sethi
,
V.
,
Patin
,
A.
,
Capodanno
,
S.
, and
Lucas
,
F. R.
,
2016
, “
Multidisciplinary Assessment of the Control of the Propellers of a Pusher Geared Open Rotor—Part II: Impact on Fuel Consumption, Engine Weight, Certification Noise, and NOx Emissions
,”
ASME J. Eng. Gas Turbines Power
,
138
(
7
), p.
072603
.
34.
Alexiou
,
A.
,
Frantzis
,
C.
,
Aretakis
,
N.
,
Riziotis
,
V.
,
Roumeliotis
,
I.
, and
Mathioudakis
,
K.
,
2016
, “Contra-Rotating Propeller Modelling for Open Rotor Engine Performance Simulations,”
ASME
Paper No. GT2016-56645.
35.
Perullo
,
C.
,
Tai
,
J.
, and
Mavris
,
D.
,
2013
, “
Effects of Advanced Engine Technology on Open Rotor Cycle Selection and Performance
,”
ASME J. Eng. Gas Turbines Power
,
135
(
7
), p.
071204
.
36.
Larsson
,
L.
,
Lundbladh
,
A.
, and
Grönstedt
,
T.
,
2013
, “
Effects of Different Propeller Models on Open Rotor Fuel Consumption
,”
International Society for Airbreathing Engines
(ISABE), Busan, South Korea, Paper No.
ISABE-2013-1712
.
37.
Dubosc
,
M.
,
Tantot
,
N.
,
Beaumier
,
P.
, and
Delattre
,
G.
,
2014
, “A Method for Predicting Contra Rotating Propellers Off-Design Performance,”
ASME
Paper No. GT2014-25057.
38.
Tantot
,
N.
,
Brichler
,
T.
,
Dubosc
,
M.
, and
Ghebali
,
S.
,
2015
, “Innovative Approaches to Propellers Off-Design Performance Modeling,”
ASME
Paper No. GT2015-42145.
39.
Giannakakis
,
P.
,
Laskaridis
,
P.
,
Nikolaidis
,
T.
, and
Kalfas
,
A.
,
2015
, “
Toward a Scalable Propeller Map
,”
J. Propul. Power
,
31
(
4
), pp.
1073
1082
.
40.
Giannakakis
,
P.
,
Goulos
,
I.
,
Laskaridis
,
P.
,
Pilidis
,
P.
, and
Kalfas
,
A.
,
2016
, “
Novel Propeller Map Scaling Method
,”
J. Propul. Power
,
32
(
6
), pp.
1325
1332
.
41.
Bringhenti
,
C.
,
1999
, “Análise de Desempenho de Turbinas a Gás em Regime Permanente,” M.Sc. Dissertation, Aerodynamics, Propulsion and Energy, Aeronautics Institute of Technology, São José dos Campos, Brazil.
42.
Bringhenti
,
C.
,
2003
, “Variable Geometry Gas Turbine Performance Analysis,” Ph.D. thesis, Aerodynamics, Propulsion and Energy, Aeronautics Institute of Technology, São José dos Campos, Brazil.
43.
Silva
,
F. J. D. S.
,
2006
, “Simulação de Desempenho de Turbinas a Gás em Regime Transitório,” M.Sc. Dissertation, Aerodynamics, Propulsion and Energy, Aeronautics Institute of Technology, São José dos Campos, Brazil.
44.
Silva
,
F. J. D. S.
,
2011
, “Estudo de Desempenho de Turbinas a Gás Sob Influência de Transitório da Geometria Variável,” Ph.D. thesis, Aerodynamics, Propulsion and Energy, Aeronautics Institute of Technology, São José dos Campos, Brazil.
45.
Barbosa
,
J. R.
,
Jefferds
,
F. S. S.
,
Tomita
,
J. T.
, and
Bringhenti
,
C.
,
2011
, “Influence of Variable Geometry Transients on Gas Turbine Performance,”
ASME
Paper No. GT2011-46565.
46.
Bringhenti
,
C.
, and
Barbosa
,
J. R.
,
2004
, “
Methodology for Gas Turbine Performance Improvement Using Variable-Geometry Compressors and Turbines
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
218
(
7
), pp.
541
549
.
47.
NAVAIR,
1993
, “Allison T56-A-7B-10W Aircraft Engine Maintenance Instructions Manual,”
Allison Engine Company,
Philadelphia, PA, Report No. NAVAIR 02B-5DD-6-2.
48.
Jane's Aero-Engines
, 2016, “Rolls-Royce Allison T56,” Jane's Aero-Engines, IHS Markit, London, accessed May 21, 2016, http://janes.ihs.com/AeroEngines/Display/1306393
49.
Kurzke
,
J.
,
2007
, “GASTURB 12—Design and Off-Design Performance of Gas Turbines,” GasTurb GmbH, Aachen, Germany,
Report
.
50.
Visser
,
W. P. J.
, and
Broomhead
,
M. J.
,
2010
, “GSP 11 User Manual, Version 11.1.0,” National Aerospace Laboratory (NLR), Amsterdam, The Netherlands.
51.
EASA
,
2013
, “Type-Certificate Data Sheet E.033,” European Aviation Safety Agency, Cologne, Germany.
52.
Jane's Aero-Engines
, 2017, “Europrop TP400-D6,” Jane's Aero-Engines, IHS Markit, London, accessed May 21, 2017, http://janes.ihs.com/AeroEngines/Display/1306457
You do not currently have access to this content.