This paper presents a set of methodologies for the extraction of linear growth and damping rates associated with transversal eigenmodes at screech level frequencies in thermoacoustically noncompact gas turbine combustion systems from time domain data. Knowledge of these quantities is of high technical relevance as a required input for the design of damping devices for high frequency (HF) oscillations. In addition, validation of prediction tools and flame models as well as the thermoacoustic characterization of a given unstable/stable operation point in terms of their distance from the Hopf bifurcation point occurs via the system growth/damping rates. The methodologies solely rely on dynamic measurement data (i.e., unsteady heat release and/or pressure recordings) while avoiding the need of any external excitation (e.g., via sirens), and are thus in principle suitable for the employment on operational engine data. Specifically, the following methodologies are presented: (1) The extraction of pure acoustic damping rates (i.e., without any flame contribution) from oscillatory chemiluminescence and pressure recordings; (2) The obtainment of net growth rates of linearly stable operation points from oscillatory pressure signals; and (3) The identification of net growth rates of linearly unstable operation points from noisy pressure envelope data. The fundamental basis of these procedures is the derivation of appropriate stochastic differential equations (SDE), which admit analytical solutions that depend on the global system parameters. These analytical expressions serve as objective functions against which measured data are fitted to yield the desired growth or damping rates. Bayesian methods are employed to optimize precision and confidence of the fitting results. Numerical test cases given by time domain formulations of the acoustic conservation equations including HF flame models as well as acoustic damping terms are set up and solved. The resulting unsteady pressure and heat release data are then subjected to the proposed identification methodologies to present corresponding proof of principles and grant suitability for employment on real systems.
Skip Nav Destination
Article navigation
Research-Article
Extraction of Linear Growth and Damping Rates of High-Frequency Thermoacoustic Oscillations From Time Domain Data
Tobias Hummel,
Tobias Hummel
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany;
Institute for Advanced Study,
Technische Universität München,
Garching 85748, Germany
e-mail: hummel@td.mw.tum.de
Technische Universität München,
Garching 85748, Germany;
Institute for Advanced Study,
Technische Universität München,
Garching 85748, Germany
e-mail: hummel@td.mw.tum.de
Search for other works by this author on:
Frederik Berger,
Frederik Berger
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
e-mail: berger@td.mw.tum.de
Technische Universität München,
Garching 85748, Germany
e-mail: berger@td.mw.tum.de
Search for other works by this author on:
Nicolai Stadlmair,
Nicolai Stadlmair
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
e-mail: stadlmair@td.mw.tum.de
Technische Universität München,
Garching 85748, Germany
e-mail: stadlmair@td.mw.tum.de
Search for other works by this author on:
Bruno Schuermans,
Bruno Schuermans
Institute for Advanced Study,
Technische Universität München,
Garching 85748, Germany;
GE Power,
Baden 5401, Switzerland
e-mail: bruno.schuermans@ge.com
Technische Universität München,
Garching 85748, Germany;
GE Power,
Baden 5401, Switzerland
e-mail: bruno.schuermans@ge.com
Search for other works by this author on:
Thomas Sattelmayer
Thomas Sattelmayer
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
e-mail: sattelmayer@td.mw.tum.de
Technische Universität München,
Garching 85748, Germany
e-mail: sattelmayer@td.mw.tum.de
Search for other works by this author on:
Tobias Hummel
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany;
Institute for Advanced Study,
Technische Universität München,
Garching 85748, Germany
e-mail: hummel@td.mw.tum.de
Technische Universität München,
Garching 85748, Germany;
Institute for Advanced Study,
Technische Universität München,
Garching 85748, Germany
e-mail: hummel@td.mw.tum.de
Frederik Berger
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
e-mail: berger@td.mw.tum.de
Technische Universität München,
Garching 85748, Germany
e-mail: berger@td.mw.tum.de
Nicolai Stadlmair
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
e-mail: stadlmair@td.mw.tum.de
Technische Universität München,
Garching 85748, Germany
e-mail: stadlmair@td.mw.tum.de
Bruno Schuermans
Institute for Advanced Study,
Technische Universität München,
Garching 85748, Germany;
GE Power,
Baden 5401, Switzerland
e-mail: bruno.schuermans@ge.com
Technische Universität München,
Garching 85748, Germany;
GE Power,
Baden 5401, Switzerland
e-mail: bruno.schuermans@ge.com
Thomas Sattelmayer
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
e-mail: sattelmayer@td.mw.tum.de
Technische Universität München,
Garching 85748, Germany
e-mail: sattelmayer@td.mw.tum.de
1Corresponding author.
Contributed by the Combustion and Fuels Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received July 4, 2017; final manuscript received August 24, 2017; published online December 19, 2017. Editor: David Wisler.
J. Eng. Gas Turbines Power. May 2018, 140(5): 051505 (10 pages)
Published Online: December 19, 2017
Article history
Received:
July 4, 2017
Revised:
August 24, 2017
Citation
Hummel, T., Berger, F., Stadlmair, N., Schuermans, B., and Sattelmayer, T. (December 19, 2017). "Extraction of Linear Growth and Damping Rates of High-Frequency Thermoacoustic Oscillations From Time Domain Data." ASME. J. Eng. Gas Turbines Power. May 2018; 140(5): 051505. https://doi.org/10.1115/1.4038240
Download citation file:
Get Email Alerts
Cited By
Temperature Dependence of Aerated Turbine Lubricating Oil Degradation from a Lab-Scale Test Rig
J. Eng. Gas Turbines Power
Multi-Disciplinary Surrogate-Based Optimization of a Compressor Rotor Blade Considering Ice Impact
J. Eng. Gas Turbines Power
Experimental Investigations on Carbon Segmented Seals With Smooth and Pocketed Pads
J. Eng. Gas Turbines Power
Related Articles
Reduced-Order Modeling of Aeroacoustic Systems for Stability Analyses of Thermoacoustically Noncompact Gas Turbine Combustors
J. Eng. Gas Turbines Power (May,2016)
Thermoacoustics of Can-Annular Combustors
J. Eng. Gas Turbines Power (January,2019)
Acoustic Resonances of an Industrial Gas Turbine Combustion System
J. Eng. Gas Turbines Power (October,2001)
Combustion Instabilities and Control of a Multiswirl Atmospheric Combustor
J. Eng. Gas Turbines Power (January,2007)
Related Proceedings Papers
Related Chapters
Microstructure Evolution and Physics-Based Modeling
Ultrasonic Welding of Lithium-Ion Batteries
Combustion Under Harmonically Oscillating Pressure
Theory of Solid-Propellant Nonsteady Combustion
The Identification of the Flame Combustion Stability by Combining Principal Component Analysis and BP Neural Network Techniques
International Conference on Mechanical Engineering and Technology (ICMET-London 2011)