With the transition of the power production markets toward renewable energy sources, an increased demand for flexible, fossil-based power production systems arises. Steep load gradients and a high range of flexibility make gas turbines a core technology in this ongoing change. In order to further increase this flexibility research on power augmentation of premixed gas turbine combustors is conducted at the Lehrstuhl für Thermodynamik, TU München. Water injection in gas turbine combustors allows for the simultaneous control of NOx emissions as well as the increase of the power output of the engine and has therefore been transferred to a premixed combustor at lab scale. So far stable operation of the system has been obtained for water-to-fuel ratios up to 2.25 at constant adiabatic flame temperatures. This paper focuses on the effects of water injection on pollutant formation in premixed gas turbine flames. In order to guarantee for high practical relevance, experimental measurements are conducted at typical preheating temperatures and common gas turbine combustor residence times of about 20 ms. Spatially resolved and global species measurements are performed in an atmospheric single burner test rig for typical adiabatic flame temperatures between 1740 and 2086 K. Global measurements of NOx and CO emissions are shown for a wide range of equivalence ratios and variable water-to-fuel ratios. Cantera calculations are used to identify nonequilibrium processes in the measured data. To get a close insight into the emission formation processes in water-injected flames, local concentration measurements are used to calculate distributions of the reaction progress variable. Finally, to clarify the influence of spray quality on the composition of the exhaust gas, a variation of the water droplet diameters is done. For rising water content at constant adiabatic flame temperature, the NOx emissions can be held constant, whereas CO concentrations increase. On the contrary, both values decrease for measurements at constant equivalence ratio and reduced flame temperatures. Further analysis of the data shows the close dependency of CO concentration on the equivalence ratio; however, due to the water addition, a shift of the CO curves can be detected. In the local measurements, changes in the distribution of the reaction progress variable and an increase of the flame length were detected for water-injected flames along with changes of the maximum as well as the averaged CO values. Finally, a strong influence of water droplet size on NOx and CO formation is shown for constant operating conditions.
Skip Nav Destination
Article navigation
Research-Article
NOx-Formation and CO-Burnout in Water-Injected, Premixed Natural Gas Flames at Typical Gas Turbine Combustor Residence Times
Stephan Lellek,
Stephan Lellek
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
e-mail: lellek@td.mw.tum.de
Technische Universität München,
Garching 85748, Germany
e-mail: lellek@td.mw.tum.de
Search for other works by this author on:
Thomas Sattelmayer
Thomas Sattelmayer
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
Technische Universität München,
Garching 85748, Germany
Search for other works by this author on:
Stephan Lellek
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
e-mail: lellek@td.mw.tum.de
Technische Universität München,
Garching 85748, Germany
e-mail: lellek@td.mw.tum.de
Thomas Sattelmayer
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
Technische Universität München,
Garching 85748, Germany
Contributed by the Combustion and Fuels Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received July 3, 2017; final manuscript received August 22, 2017; published online December 19, 2017. Editor: David Wisler.
J. Eng. Gas Turbines Power. May 2018, 140(5): 051504 (9 pages)
Published Online: December 19, 2017
Article history
Received:
July 3, 2017
Revised:
August 22, 2017
Citation
Lellek, S., and Sattelmayer, T. (December 19, 2017). "NOx-Formation and CO-Burnout in Water-Injected, Premixed Natural Gas Flames at Typical Gas Turbine Combustor Residence Times." ASME. J. Eng. Gas Turbines Power. May 2018; 140(5): 051504. https://doi.org/10.1115/1.4038239
Download citation file:
Get Email Alerts
Cited By
Research on Effect of Endwall Contouring of Vaned Diffuser on Stable Operating Range of Centrifugal Compressor
J. Eng. Gas Turbines Power (March 2025)
Data-Driven Generative Model Aimed to Create Synthetic Data for the Long-Term Forecast of Gas Turbine Operation
J. Eng. Gas Turbines Power (March 2025)
Optimization of Smooth Straight-Through Labyrinth Seal Based on XGBoost and Improved Genetic Algorithm
J. Eng. Gas Turbines Power (March 2025)
Related Articles
Experimental Study of the Interaction of Water Sprays With Swirling Premixed Natural Gas Flames
J. Eng. Gas Turbines Power (February,2017)
Experimental Investigation of Spray and Combustion Performances of a Fuel-Staged Low Emission Combustor: Effects of Main Swirl Angle
J. Eng. Gas Turbines Power (December,2017)
Assessment of Scale-Resolved Computational Fluid Dynamics Methods for the Investigation of Lean Burn Spray Flames
J. Eng. Gas Turbines Power (February,2017)
A High-Temperature Catalytic Combustor With Starting Burner
J. Eng. Gas Turbines Power (July,2001)
Related Proceedings Papers
Related Chapters
Numerical Modeling of N O x Emission in Turbulant Spray Flames Using Thermal and Fuel Models
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Numerical Simulation of Nucleate Spray Cooling: Effect of Droplet Impact on Bubble Growth and Heat Transfer in a Thin Liquid Film
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
A New Boom Mechanism Design for Corn Sprayer
International Conference on Mechanical Engineering and Technology (ICMET-London 2011)