Homogeneous charge is a preferred operation mode of gasoline direct-injection (GDI) engines. However, a limited amount of work exists in the literature for combustion models of this mode of engine operation. Current work describes a model developed to study combustion in a homogeneous charge GDI engine. The model was validated using experimental data from a 1.6 L Ford EcoBoost® engine, tested at the U.S. EPA. The combustion heat release was approximated using a double-Wiebe function, to account for the rapid initial premixed combustion followed by a gradual diffusion-like state of combustion, as observed in this GDI engine. Variables of Wiebe correlations were adjusted into a semipredictive combustion model. The effectiveness of semipredictive combustion model was tested in prediction of in-cylinder pressures. The root-mean-square (RMS) errors between experiments and numerical results were within 2.5% of in-cylinder peak pressures during combustion. The semipredictive combustion model was further studied to develop a predictive combustion model. The performance of predictive combustion model was examined by regenerating the experimental cumulative heat release. The heat release analysis developed for the GDI engine was further applied to a dual mode, turbulent jet ignition (DM-TJI) engine. DM-TJI is a distributed combustion technology with the potential to provide diesel-like efficiencies and minimal engine-out emissions for spark-ignition engines. The DM-TJI engine was observed to offer a faster burn rate and lower in-cylinder heat transfer compared to the GDI engine.

References

1.
Fraser
,
N.
,
Blaxill
,
H.
,
Lumsden
,
G.
, and
Bassett
,
M.
,
2009
, “
Challenges for Increased Efficiency Through Gasoline Engine Downsizing
,”
SAE Int. J. Engines
,
2
(
1
), pp.
991
1008
.
2.
Estefanous
,
F.
,
Mekhael
,
S.
,
Badawy
,
T.
,
Henein
,
N.
, and
Zahdeh
,
A.
,
2014
, “
Multisensing Fuel Injector in Turbocharged Gasoline Direct Injection Engines
,”
ASME J. Eng. Gas Turbines Power
,
136
(
11
), p.
111502
.
3.
Vedula
,
R. T.
,
Song
,
R.
,
Stuecken
,
T.
,
Zhu
,
G. G.
, and
Schock
,
H.
,
2017
, “
Thermal Efficiency of a Dual-Mode Turbulent Jet Ignition Engine Under Lean and Near-Stoichiometric Operation
,”
Int. J. Engine Res.
,
18
(10), pp. 1055–1066.
4.
Song
,
R.
,
Gentz
,
G.
,
Zhu
,
G.
,
Toulson
,
E.
, and
Schock
,
H.
,
2016
, “
A Control-Oriented Model of Turbulent Jet Ignition Combustion in a Rapid Compression Machine
,”
Proc. Inst. Mech. Eng. Part J
,
231
(10), pp. 1315–1325.
5.
De Boer
,
C.
,
Bonar
,
G.
,
Sasaki
,
S.
, and
Shetty
,
S.
,
2013
, “
Application of Supercritical Gasoline Injection to a Direct Injection Spark Ignition Engine for Particulate Reduction
,”
SAE
Paper No. 2013-01-0257.
6.
Disch
,
C.
,
Kubach
,
H.
,
Spicher
,
U.
,
Pfeil
,
J.
,
Altenschmidt
,
F.
, and
Schaupp
,
U.
,
2013
, “
Investigations of Spray-Induced Vortex Structures During Multiple Injections of a DISI Engine in Stratified Operation Using High-Speed-PIV
,”
SAE
Paper No. 2013-01-0563.
7.
Doornbos
,
G.
,
Hemdal
,
S.
, and
Dahl
,
D.
,
2015
, “
Reduction of Fuel Consumption and Engine-Out NOx Emissions in a Lean Homogeneous GDI Combustion System, Utilizing Valve Timing and an Advanced Ignition System
,”
SAE
Paper No. 2015-01-0776.
8.
Costa
,
M.
,
Catapano
,
F.
,
Marseglia
,
G.
,
Sorge
,
U.
,
Sementa
,
P.
, and
Vaglieco
,
B. M.
,
2015
, “
Experimental and Numerical Investigation of the Effect of Split Injections on the Performance of a GDI Engine Under Lean Operation
,”
SAE
Paper No. 2015-24-2413.
9.
Berni
,
F.
,
Breda
,
S.
,
D'Adamo
,
A.
,
Fontanesi
,
S.
, and
Cantore
,
G.
,
2015
, “
Numerical Investigation on the Effects of Water/Methanol Injection as Knock Suppressor to Increase the Fuel Efficiency of a Highly Downsized GDI Engine
,”
SAE
Paper No. 2015-24-2499.
10.
Lucchini
,
T.
,
D'Errico
,
G.
,
Onorati
,
A.
,
Bonandrini
,
G.
,
Venturoli
,
L.
, and
Gioia
,
D. R.
,
2012
, “
Development of a CFD Approach to Model Fuel-Air Mixing in Gasoline Direct-Injection Engines
,”
SAE
Paper No. 2012-01-0146.
11.
Fatouraie
,
M.
,
Wooldridge
,
M. S.
,
Petersen
,
B. R.
, and
Wooldridge
,
S. T.
,
2015
, “
Spray Development and Wall Impingement of Ethanol and Gasoline in an Optical Direct Injection Spark Ignition Engine
,”
ASME
Paper No. ICEF2015-1053.
12.
Cho
,
K.-W.
,
Assanis
,
D.
,
Filipi
,
Z.
,
Szekely
,
G.
,
Najt
,
P.
, and
Rask
,
R.
,
2008
, “
Experimental Investigation of Combustion and Heat Transfer in a Direct-Injection Spark Ignition Engine Via Instantaneous Combustion Chamber Surface Temperature Measurements
,”
Proc. Inst. Mech. Eng., Part D
,
222
(
11
), pp.
2219
2233
.
13.
Brunt
,
M. F. J.
, and
Platts
,
K. C.
,
1999
, “
Calculation of Heat Release in Direct Injection Diesel Engines
,”
SAE
Paper No. 1999-01-0187.
14.
Egnell
,
R.
,
2001
, “
Comparison of Heat Release and NOx Formation in a DI Diesel Engine Running on DME and Diesel Fuel
,”
SAE
Paper No. 2001-01-0651.
15.
Dowell
,
P. G.
,
Akehurst
,
S.
, and
Burke
,
R. D.
,
2016
, “
An Improved Rate of Heat Release Model for Modern High Speed Diesel Engines
,”
ASME
Paper No. ICEF2016-9360.
16.
Lindström
,
F.
,
Angstrom
,
H.-E.
,
Kalghatgi
,
G.
, and
Möller
,
C. E.
,
2005
, “
An Empirical SI Combustion Model Using Laminar Burning Velocity Correlations
,”
SAE
Paper No. 2005-01-2106.
17.
Hellström
,
E.
,
Stefanopoulou
,
A.
, and
Jiang
,
L.
,
2014
, “
A Linear Least-Squares Algorithm for Double-Wiebe Functions Applied to Spark-Assisted Compression Ignition
,”
ASME J. Eng. Gas Turbines Power
,
136
(
9
), p.
091514
.
18.
Prakash
,
N.
,
Martz
,
J. B.
, and
Stefanopoulou
,
A. G.
,
2015
, “
A Phenomenological Model for Predicting the Combustion Phasing and Variability of Spark Assisted Compression Ignition (SACI) Engines
,”
ASME
Paper No. DSCC2015-9883.
19.
Spicher
,
U.
,
Reissing
,
J.
,
Kech
,
J. M.
, and
Gindele
,
J.
,
1999
, “
Gasoline Direct Injection (GDI) Engines - Development Potentialities
,”
SAE
Paper No. 1999-01-2938.
20.
Huegel
,
P.
,
Kubach
,
H.
,
Koch
,
T.
, and
Velji
,
A.
,
2015
, “
Investigations on the Heat Transfer in a Single Cylinder Research SI Engine With Gasoline Direct Injection
,”
SAE Int. J. Engines
,
8
(
2
), pp.
557
569
.
21.
Stuhldreher
,
M.
,
Schenk
,
C.
,
Brakora
,
J.
,
Hawkins
,
D.
,
Moskalik
,
A.
, and
DeKraker
,
P.
,
2015
, “
Downsized Boosted Engine Benchmarking and Results
,”
SAE
Paper No. 2015-01-1266.
22.
Heywood
,
J.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill Education
, New York, pp.
383
389
.
23.
Gatowski
,
J. A.
,
Balles
,
E. N.
,
Chun
,
K. M.
,
Nelson
,
F. E.
,
Ekchian
,
J. A.
, and
Heywood
,
J. B.
,
1984
, “
Heat Release Analysis of Engine Pressure Data
,”
SAE
Paper No. 841359.
24.
Chang
,
J.
,
Güralp
,
O.
,
Filipi
,
Z.
,
Assanis
,
D. N.
,
Kuo
,
T.-W.
,
Najt
,
P.
, and
Rask
,
R.
,
2004
, “
New Heat Transfer Correlation for an HCCI Engine Derived From Measurements of Instantaneous Surface Heat Flux
,”
SAE
Paper No. 2004-01-2996.
25.
Yun
,
H. J.
, and
Mirsky
,
W.
,
1974
, “
Schlieren-Streak Measurements of Instantaneous Exhaust Gas Velocities From a Spark-Ignition Engine
,”
SAE
Paper No. 741015.
26.
Reddy
,
P. R.
,
Krishna
,
D. M.
,
Mallan
,
K. R. G.
, and
Ganesan
,
V.
,
1993
, “
Evaluation of Combustion Parameters in Direct Injection Diesel Engines—An Easy and Reliable Method
,”
SAE
Paper No. 930605.
27.
Hariyanto
,
A.
,
Bagiasna
,
K.
,
Asharimurti
,
I.
,
Wijaya
,
A. O.
,
Reksowardoyo
,
I. K.
, and
Arismunandar
,
W.
,
2007
, “
Application of Wavelet Analysis to Determine the Start of Combustion of Diesel Engines
,”
SAE
Paper No. 2007-01-3556.
28.
Shen
,
Y.
,
Schock
,
H. J.
, and
Oppenheim
,
A. K.
,
2003
, “
Pressure Diagnostics of Closed System in a Direct Injection Spark Ignition Engine
,”
SAE
Paper No. 2003-01-0723.
29.
Bitar
,
E. Y.
,
Oppenheim
,
A. K.
, and
Schock
,
H. J.
,
2006
, “
Model for Control of Combustion in a Piston Engine
,”
SAE
Paper No. 2006-01-0401.
30.
Katrašnik
,
T.
,
Trenc
,
F.
, and
Oprešnik
,
S. R.
,
2005
, “
A New Criterion to Determine the Start of Combustion in Diesel Engines
,”
ASME J. Eng. Gas Turbines Power
,
128
(
4
), pp.
928
933
.
31.
Ghojel
,
J. I.
,
2010
, “
Review of the Development and Applications of the Wiebe Function: A Tribute to the Contribution of Ivan Wiebe to Engine Research
,”
Int. J. Engine Res.
,
11
(
4
), pp.
297
312
.
32.
Assanis
,
D. N.
,
Filipi
,
Z. S.
,
Fiveland
,
S. B.
, and
Syrimis
,
M.
,
2003
, “
A Predictive Ignition Delay Correlation Under Steady-State and Transient Operation of a Direct Injection Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
125
(
2
), pp.
450
457
.
You do not currently have access to this content.