The recent move toward subsea oil and gas production brings about a requirement to locate process equipment in deepwater installations. Furthermore, there is a drive toward omitting well stream separation functionality, as this adds complexity and cost to the subsea installation. This in turn leads to technical challenges for the subsea installed pumps and compressors that are now required to handle multiphase flow of varying gas to liquid ratios. This highlights the necessity for a strong research focus on multiphase flow impact on rotordynamic properties and thereby operational stability of the subsea installed rotating machinery. It is well known that careful design of turbomachinery seals, such as interstage and balance piston seals, is pivotal for the performance of pumps and compressors. Consequently, the ability to predict the complex interaction between fluid dynamics and rotordynamics within these seals is key. Numerical tools offering predictive capabilities for turbomachinery seals in multiphase flow are currently being developed and refined, however the lack of experimental data for multiphase seals renders benchmarking and validation impossible. To this end, the Technical University of Denmark and Lloyd's Register Consulting are currently establishing a purpose built state of the art multiphase seal test facility, which is divided into three modules. Module I consists of a full scale active magnetic bearing (AMB) based rotordynamic test bench. The internally designed custom AMBs are equipped with an embedded Hall sensor system enabling high-precision noncontact seal force quantification. Module II is a fully automatized calibration facility for the Hall sensor based force quantification system. Module III consists of the test seal housing assembly. This paper provides details on the design of the novel test facility and the calibration of the Hall sensor system employed to measure AMB forces. Calibration and validation results are presented, along with an uncertainty analysis on the force quantification capabilities.

References

1.
Santos
,
I. F.
, and
Russo
,
F. H.
,
1998
, “
Tilting-Pad Journal Bearings With Electronic Radial Oil Injection
,”
ASME J. Tribol.
,
120
(
3
), pp.
583
594
.
2.
Santos
,
I.
, and
Nicoletti
,
R.
,
1999
, “
THD Analysis in Tilting-Pad Journal Bearings Using Multiple Orifice Hybrid Lubrication
,”
ASME J. Tribol.
,
121
(4), pp.
892
900
.
3.
Childs
,
D.
,
1993
,
Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis
,
Wiley
,
Hoboken, NJ
.
4.
Childs
,
D.
, and
Vance
,
J.
,
1997
, “
Annular Gas Seals and Rotordynamics of Compressors and Turbines
,”
Twenty-Sixth Turbomachinery Symposium
, pp.
201
220
.
5.
Moore
,
J. J.
,
2003
, “
Three-Dimensional CFD Rotordynamic Analysis of Gas Labyrinth Seals
,”
ASME J. Vib. Acoust.
,
125
(
4
), pp.
427
433
.
6.
Ertas
,
B. H.
,
Gamal
,
A.
, and
Vance
,
J. M.
,
2006
, “
Rotordynamic Force Coefficients of Pocket Damper Seals
,”
ASME J. Turbomach.
,
128
(
4
), pp.
725
737
.
7.
Childs
,
D. W.
,
1983
, “
Dynamic Analysis of Turbulent Annular Seals Based on Hirs Lubrication Equations
,”
ASME J. Lubr. Technol.
,
105
(
3
), pp.
429
436
.
8.
Nelson
,
C.
,
Childs
,
D.
,
Nicks
,
C.
, and
Elrod
,
D.
,
1986
, “
Theory Versus Experiment for the Rotordynamic Coefficients of Annular Gas Seals—Part 2: Constant-Clearance and Convergent-Tapered Geometry
,”
ASME J. Tribol.
,
108
(
3
), pp.
433
438
.
9.
Murphy
,
B. T.
, and
Vance
,
J. M.
,
1980
, “
Labyrinth Seal Effects on Rotor Whirl Stability
,”
Second International Conference on Vibrations in Rotating Machinery
, pp. 369–373.
10.
Hsu
,
Y.
, and
Brennen
,
C. E.
,
2002
, “
Fluid Flow Equations for Rotordynamic Flows in Seals and Leakage Paths
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
176
181
.
11.
Zeidan
,
F. Y.
,
Perez
,
R. X.
, and
Stephenson
,
E. M.
,
1993
, “
The Use of Honeycomb Seals in Stabilizing Two Centrifugal Compressors
,”
Twenty-Second Turbomachinery Symposium
, pp.
3
16
.
12.
Childs
,
D. W.
,
Rodriguez
,
L. E.
,
Cullotta
,
V.
,
Al-Ghasem
,
A.
, and
Graviss
,
M.
,
2006
, “
Rotordynamic-Coefficients and Static (Equilibrium Loci and Leakage) Characteristics for Short, Laminar-Flow Annular Seals
,”
ASME J. Tribol.
,
128
(
2
), pp.
378
387
.
13.
Picardo
,
A.
, and
Childs
,
D. W.
,
2005
, “
Rotordynamic Coefficients for a Tooth-on-Stator Labyrinth Seal at 70 Bar Supply Pressures: Measurements Versus Theory and Comparisons to a Hole-Pattern Stator Seal
,”
ASME J. Eng. Gas Turbines Power
,
127
(
4
), pp.
843
855
.
14.
Childs
,
D. W.
, and
Wade
,
J.
,
2004
, “
Rotordynamic-Coefficient and Leakage Characteristics for Hole-Pattern-Stator Annular Gas Seals—Measurements Versus Predictions
,”
ASME J. Tribol.
,
126
(
2
), pp.
326
333
.
15.
Ertas
,
B. H.
,
Delgado
,
A.
, and
Vannini
,
G.
,
2011
, “
Rotordynamic Force Coefficients for Three Types of Annular Gas Seals With Inlet Preswirl and High Differential Pressure Ratio
,”
ASME J. Eng. Gas Turbines Power
,
134
(4), p.
042530
.
16.
Hirano
,
T.
,
Guo
,
Z.
, and
Kirk
,
R. G.
,
2005
, “
Application of Computational Fluid Dynamics Analysis for Rotating Machinery Part II: Labyrinth Seal Analysis
,”
ASME J. Eng. Gas Turbines Power
,
127
(
4
), pp.
820
826
.
17.
Athevale
,
M. M.
,
Przekwas
,
A. J.
,
Hendricks
,
R. C.
, and
Liang
,
A.
,
1994
, “
SCISEAL: A 3D CFD Code for Accurate Analysis of Fluid Flow and Forces in Seals
,”
Advanced ETO Propulsion Conference
, pp.
337
345
.
18.
Moore
,
J. J.
, and
Palazzolo
,
A. B.
,
1999
, “
CFD Comparison to 3D Laser Anemometer and Rotordynamic Force Measurements for Grooved Liquid Annular Seals
,”
ASME J. Tribol.
,
121
(
2
), pp.
307
314
.
19.
Kim
,
N.
, and
Rhode
,
D. L.
,
2000
, “
A New CFD-Perturbation Model for the Rotordynamics of Incompressible Flow Seals
,”
ASME
Paper No. 2000-GT-0402.
20.
Nordmann
,
R.
, and
Dietzen
,
F. J.
,
1988
, “
Finite Difference Analysis of Rotordynamic Seal Coefficients for an Eccentric Shaft Position
,”
Rotordynamic Instability Problems in High-Performance Turbomachinery
, NASA Lewis Research Center, Brook Park, OH.
21.
Rhode
,
D. L.
,
Hensel
,
S. J.
, and
Guidry
,
M. J.
,
1992
, “
Labyrinth Seal Rotordynamic Forces Using a Three-Dimensional Navier-Stokes Code
,”
ASME J. Tribol.
,
114
(
4
), pp.
683
689
.
22.
Tam
,
L. T.
,
Przekwas
,
A. J.
,
Muszynska
,
A.
,
Hendricks
,
R. C.
,
Braun
,
M. J.
, and
Mullen
,
R. L.
,
1988
, “
Numerical and Analytical Study of Fluid Dynamic Forces in Seals and Bearings
,”
ASME J. Vib. Acoust.
,
110
(
3
), pp.
315
325
.
23.
Nielsen
,
K. K.
,
Childs
,
D. W.
, and
Myllerup
,
C. M.
,
2001
, “
Experimental and Theoretical Comparison of Two Swirl Brake Designs
,”
ASME J. Turbomach.
,
123
(
2
), p.
353
.
24.
Nielsen
,
K. K.
,
Myllerup
,
C. M.
, and
Van den Braembussche
,
R. A.
,
1999
, “
Parametric Study of the Flow in Swirl Brakes by Means of a 3D Navier–Stokes Solver
,”
Transactions of the Third European Conference on Turbomachinery
, pp.
489
498
.
25.
Nielsen
,
K. K.
,
Van den Braembussche
,
R.
, and
Myllerup
,
C.
,
1998
, “
Optimization of Swirl Brakes by Means of a 3D Navier–Stokes Solver
,”
ASME
Paper No. 98-GT-328.
26.
Nielsen
,
K. K.
,
Jønck
,
K.
, and
Underbakke
,
H.
,
2012
, “
Hole-Pattern and Honeycomb Seals Rotordynamic Forces: Validation of CFD Based Prediction Techniques
,”
ASME
Paper No. GT2012-69878.
27.
Wagner
,
N.
,
Steff
,
K.
,
Gausmann
,
R.
, and
Schmidt
,
M.
,
2009
, “
Investigations on the Dynamic Coefficients of Impeller Eye Labyrinth Seals
,”
Thirty-Eighth Turbomachinery Symposium
, Houston, TX, Sept. 14–17, pp.
14
19
.
28.
Kocur
,
J. A.
,
Nicholas
,
J. C.
, and
Lee
,
C. C.
,
2007
, “
Surveying Tilting Pad Journal Bearing and Gas Labyrinth Seal Coefficients and Their Effect on Rotor Stability
,”
36th Turbomachinery Symposium
, Houston, TX, Sept. 10–13, pp.
1
10
.
29.
Crowe
,
C. T.
,
2006
,
Multiphase Flow Handbook
,
CRC Press
,
Boca Raton, FL
.
30.
Andrés
,
L. S.
,
2010
, “
A Mixture Bulk-Flow Model for Annular Pressure Seals
,” Texas A&M University, Mechanical Engineering Department, Turbomachinery Laboratory, Technical Report No. TL-xx-2010.
31.
Andrés
,
L. S.
,
2011
, “
Rotordynamic Force Coefficients of Bubbly Mixture Annular Pressure Seals
,”
ASME J. Eng. Gas Turbines Power
,
134
(2), pp.
022503
.
32.
Andrés
,
L. S.
,
Lu
,
X.
, and
Liu
,
Q.
,
2015
, “
Measurements of Flowrate and Force Coefficients in a Short Length Annular Seal Supplied With a Liquid/Gas Mixture (Stationary Journal)
,”
Tribol. Trans.
,
59
(4), pp. 758–767.
33.
Vannini
,
G.
,
Bertoner
,
M.
,
Nielsen
,
K. K.
,
Stronach
,
R.
,
Iudiciani
,
P.
, and
Bertoneri
,
M.
,
2015
, “
Experimental Results and CFD Simulations of Labyrinth and Pocket Damper Seals for Wet Gas Compression
,”
ASME
Paper No. GT2015-43095.
34.
Mihai
,
A.
,
Abdelmalik
,
Z.
, and
Pineau
,
P. G.
,
2011
, “
Rotordynamic Analysis of Textured Annular Seals With Multiphase (Bubbly) Flow
,”
Incas Bull.
,
3
(
3
), pp.
3
13
.
35.
Voigt
,
A. J.
,
Iudiciani
,
P.
,
Nielsen
,
K. K.
, and
Santos
,
I. F.
,
2016
, “
CFD Applied for the Identification of Stiffness and Damping Properties for Smooth Annular Turbomachinery Seals in Multiphase Flow
,”
ASME
Paper No. GT2016-57905.
36.
Athavale
,
M.
,
Przekwas
,
A.
, and
Hendricks
,
R.
,
1992
, “
A Finite Volume Numerical Method to Calculate Fluid Forces and Rotordynamic Coefficients in Seals
,”
28th Joint Propulsion Conference and Exhibit
, pp. 6–8.
37.
Chochua
,
G.
, and
Soulas
,
T.
,
2007
, “
Numerical Modeling of Rotordynamic Coefficients for Deliberately Roughened Stator Gas Annular Seals
,”
ASME J. Tribol.
,
129
(2), pp.
424
429
.
38.
Yan
,
X.
,
Li
,
J.
, and
Feng
,
Z.
,
2011
, “
Investigations on the Rotordynamic Characteristics of a Hole-Pattern Seal Using Transient CFD and Periodic Circular Orbit Model
,”
ASME J. Vib. Acoust.
,
133
(
4
), p.
041007
.
39.
Schweitzer
,
G.
, and
Maslen
,
E.
,
2009
,
Magnetic Bearings Theory, Design, and Application to Rotating Machinery
,
Springer
,
New York
.
40.
Aenis
,
M.
,
Knopf
,
E.
, and
Nordmann
,
R.
,
2002
, “
Active Magnetic Bearings for the Identification and Fault Diagnosis in Turbomachinery
,”
Mechatronics
,
12
(
8
), pp.
1011
1021
.
41.
Voigt
,
A.
, and
Santos
,
I.
,
2012
, “
Theoretical and Experimental Investigation of Force Estimation Errors Using Active Magnetic Bearings With Embedded Hall Sensors
,”
ASME
Paper No. GT2012-68282.
42.
Zutavern
,
Z. S.
, and
Childs
,
D. W.
,
2005
, “
Fiber-Optic Strain Gauge Calibration and Dynamic Flexibility Transfer Function Identification in Magnetic Bearings
,”
ASME
Paper No. GT2005-68484.
43.
Raymer
,
S. G.
, and
Childs
,
D. W.
,
2001
, “
Force Measurements in Magnetic Bearings Using Fiber Optic Strain Gauges
,”
ASME
Paper No. 2001-GT-0027.
44.
Zutavern
,
Z. S.
, and
Childs
,
D. W.
,
2008
, “
Identification of Rotordynamic Forces in a Flexible Rotor System Using Magnetic Bearings
,”
ASME J. Eng. Gas Turbines Power
,
130
(
2
), p.
022504
.
45.
Kjolhede
,
K.
, and
Santos
,
I. F.
,
2007
, “
Experimental Contribution to High-Precision Characterization of Magnetic Forces in Active Magnetic Bearings
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), p.
503
.
46.
Schweitzer
,
G.
,
2009
, “
Applications and Research Topics for Active Magnetic Bearings
,”
IUTAM
-Symposium on Emerging Trends in Rotor Dynamics
, pp.
263
273
.
47.
Gähler
,
C.
, and
Förch
,
P.
,
1994
, “
A Precise Magnetic Bearing Exciter for Rotordynamic Experiments
,”
4th International Symposium on Magnetic Bearings
, pp.
193
200
.
48.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
You do not currently have access to this content.