This paper deals with a numerical study aimed at the characterization of hot-gas ingestion through turbine rim seals. The numerical campaign focused on an experimental facility which models ingress through the rim seal into the upstream wheel-space of an axial-turbine stage. Single-clearance arrangements were considered in the form of axial- and radial-seal gap configurations. With the radial-seal clearance configuration, computational fluid dynamics (CFD) steady-state solutions were able to predict the system sealing effectiveness over a wide range of coolant mass flow rates reasonably well. The greater insight of flow field provided by the computations illustrates the thermal buffering effect when ingress occurs: For a given sealing flow rate, the effectiveness on the rotor was significantly higher than that on the stator due to the axial flow of hot gases from stator to rotor caused by pumping effects. The predicted effectiveness on the rotor was compared with a theoretical model for the thermal buffering effect showing good agreement. When the axial-seal clearance arrangement is considered, the agreement between CFD and experiments worsens; the variation of sealing effectiveness with coolant flow rate calculated by means of the simulations displays a distinct kink. It was found that the “kink phenomenon” can be ascribed to an overestimation of the egress spoiling effects due to turbulence modeling limitations. Despite some weaknesses in the numerical predictions, the paper shows that CFD can be used to characterize the sealing performance of axial- and radial-clearance turbine rim seals.

References

1.
Owen
,
J.
, and
Rogers
,
R. H.
,
1989
,
Flow and Heat Transfer in Rotating-Disc Systems, Volume 1—Rotor Stator Systems
,
Research Studies Press Ltd.
,
Taunton, UK
.
2.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part 1: Externally Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021012
.
3.
Bayley
,
F. J.
, and
Owen
,
J.
,
1970
, “
Fluid Dynamics of a Shrouded Disk System With a Radial Outflow of Coolant
,”
ASME J. Eng. Power
,
92
(
3
), pp.
335
341
.
4.
Chew
,
J. W.
,
1991
, “
A Theoretical Study of Ingress for Shrouded Rotating Disk Systems With Radial Outflow
,”
ASME J. Turbomach.
,
113
(
1
), pp.
91
97
.
5.
Chew
,
J. W.
,
Dadkhah
,
S.
, and
Turner
,
A. B.
,
1992
, “
Rim Sealing of Rotor–Stator Wheelspaces in the Absence of External Flow
,”
ASME J. Turbomach.
,
114
(
2
), pp.
433
438
.
6.
Dadkhah
,
S.
,
Turner
,
A. B.
, and
Chew
,
J. W.
,
1992
, “
Performance of Radial Clearance Rim Seals in Upstream and Downstream Rotor–Stator Wheelspaces
,”
ASME J. Turbomach.
,
114
(
2
), pp.
439
445
.
7.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1983
, “
An Investigation of Ingress for an Air-Cooled Shrouded Rotating-Disk System With Radial-Clearance Seals
,”
J. Eng. Power
,
105
(
1
), pp.
178
183
.
8.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems—Part 1: The Behavior of Simple Shrouded Rotating-Disk Systems in a Quiescent Environment
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
98
105
.
9.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems—Part 2: The Performance of Simple Seals in a Quasi-Axisymmetric External Flow
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
106
112
.
10.
Daniels
,
W. A.
,
Johnson
,
B. V.
,
Graber
,
D. J.
, and
Martin
,
R. J.
,
1992
, “
Rim Seal Experiments and Analysis for Turbine Applications
,”
ASME J. Turbomach.
,
114
(
2
), pp.
426
432
.
11.
Graber
,
D. J.
,
Daniels
,
W. A.
, and
Johnson
,
B. V.
,
1987
, “
Disk Pumping Test
,”
Report No. AFWAL -TR-87-2050
.http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA187199
12.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2016
, “
Review of Ingress in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
120801
.
13.
Sangan
,
C. M.
,
Scobie
,
J. A.
,
Zhou
,
K.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2014
, “
Performance of a Finned Turbine Rim Seal
,”
ASME J. Turbomach.
,
136
(
11
), p.
111008
.
14.
Cho
,
G. H.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2015
, “
Effect of Ingress on Turbine Discs
,”
ASME J. Eng. Gas Turbines Power
,
138
(
4
), p.
042502
.
15.
Mear
,
L. I.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2015
, “
Theoretical Model to Determine Effect of Ingress on Turbine Discs
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032502
.
16.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2011
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part 2: Rotationally-Induced Ingress
,”
ASME
Paper No. GT2011-45313.
17.
Da Soghe
,
R.
,
Facchini
,
B.
,
Innocenti
,
L.
, and
Poncet
,
S.
,
2010
, “
Numerical Benchmark of Turbulence Modelling in Gas Turbine Rotor-Stator System
,”
ASME
Paper No. GT2010-22627.
18.
Poncet
,
S.
,
Nguyen
,
T.
,
Harmand
,
S.
,
Pell
,
J.
,
Da Soghe
,
R.
,
Bianchini
,
C.
, and
Viazzo
,
S.
,
2013
, “
Turbulent Impinging Jet Flow Into an Unshrouded Rotor-Stator System: Hydrodynamics and Heat Transfer
,”
Int. J. Heat Fluid Flow
,
44
, pp.
719
734
.
19.
Hills
,
N. J.
,
Chew
,
J. W.
, and
Turner
,
A. B.
,
2002
, “
Computational and Mathematical Modeling of Turbine Rim Seal Ingestion
,”
ASME J. Turbomach.
,
124
(
2
), pp.
306
315
.
20.
Laskowski
,
G. M.
,
Bunker
,
R. S.
,
Bailey
,
J.
, and
Ledezma
,
G.
,
2009
, “
An Investigation of Turbine Wheelspace Cooling Flow Interaction With a Transonic Hot Gas Path Part 2: CFD Simulations
,”
ASME
Paper No. GT2009-59193.
21.
Andreini
,
A.
,
Da Soghe
,
R.
,
Facchini
,
B.
, and
Zecchi
,
S.
,
2008
, “
Turbine Stator Well CFD Studies: Effects of Cavity Cooling Air Flow
,”
ASME
Paper No. GT2008-51067.
22.
Cao
,
C.
,
Chew
,
J.
,
Millington
,
P.
, and
Hogg
,
S.
,
2004
, “
Interaction of Rim Seal and Annulus Flows in an Axial Flow Turbine
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
786
793
.
23.
Jakoby
,
R.
,
Zierer
,
T.
,
Lindblad
,
K.
,
Larsson
,
J.
,
deVito
,
L.
,
Bohn
,
D.
,
Funke
,
J.
, and
Decker
,
A.
,
2004
, “
Interaction of Rim Seal and Annulus Flows in an Axial Flow Turbine
,”
ASME
Paper No. GT2004-53829.
24.
Zhou
,
D.
,
Roy
,
R.
,
Wang
,
C.
, and
Glahn
,
J.
,
2009
, “
Main Gas Ingestion in a Turbine Stage for Three Rim Cavity Configurations
,”
ASME
Paper No. GT2009-59851.
25.
O'Mahoney
,
T. S. D.
,
Hills
,
N. J.
,
Chew
,
J. W.
, and
Scanlon
,
T.
,
2010
, “
Large-Eddy Simulations of Rim Seal Ingestion
,”
ASME
Paper No. GT2010-22962.
26.
Pountney
,
O. J.
,
Sangan
,
C. M.
,
Lock
,
G. D.
, and
Owen
,
J. M.
,
2013
, “
Effect of Ingestion on Temperature of Turbine Discs
,”
ASME J. Turbomach.
,
135
(
5
), p.
051010
.
27.
Zhou
,
K.
,
Wood
,
S. N.
, and
Owen
,
J. M.
,
2013
, “
Statistical and Theoretical Models of Ingestion Through Turbine Rim Seals
,”
ASME J. Turbomach.
,
135
(
2
), p.
021014
.
28.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2014
, “
Experimental Measurements of Hot Gas Ingestion Through Turbine Rim Seals at Off-Design Conditions
,”
Proc. Inst. Mech. Eng., Part A
,
228
(
5
), pp.
491
507
.
29.
Bianchini
,
C.
,
Andrei
,
L.
,
Andreini
,
A.
, and
Facchini
,
B.
,
2013
, “
Numerical Benchmark of Non-Conventional RANS Turbulence Models for Film and Effusion Cooling
,”
ASME J. Turbomach.
,
135
(
4
), p.
041026
.
30.
Holloway
,
D. S.
,
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2005
, “
Computational Study of Jet-in-Crossflow and Film Cooling Using a New Unsteady-Based Turbulence Model
,”
ASME
Paper No. GT2005-68155.
31.
Savov
,
S.
,
Atkins
,
N.
, and
Uchida
,
S.
,
2016
, “
Comparison of Single and Double Lip Rim Seal Geometry
,”
ASME
Paper No. GT2016-56317.
You do not currently have access to this content.