Fouling of compressor blades is an important mechanism leading to performance deterioration in gas turbines over time. Experimental and simulation data are available for the impact of specified amounts of fouling on the performance as well as the amount of foulants entering the engine for defined air filtration systems and ambient conditions. This study provides experimental data on the amount of foulants in the air that actually stick to a blade surface for different conditions. Quantitative results both indicate the amount of dust as well as the distribution of dust on the airfoil, for a dry airfoil, and also the airfoils that were wet from ingested water, in addition to, different types of oil. The retention patterns are correlated with the boundary layer shear stress. The tests show the higher dust retention from wet surfaces compared to dry surfaces. They also provide information about the behavior of the particles after they impact on the blade surface, showing for a certain amount of wet film thickness, the shear forces actually wash the dust downstream and off the airfoil. Further, the effect of particle agglomeration of particles to form larger clusters was observed, which would explain the disproportional impact of very small particles on boundary layer losses.

References

1.
Kurz
,
R.
, and
Brun
,
K.
,
2012
, “
Fouling Mechanisms in Axial Compressors
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
032401
.
2.
Brekke
,
O.
, and
Bakken
,
L. E.
,
2010
, “
Performance Deterioration of Intake Air Filters for Gas Turbines in Offshore Installations
,”
ASME
Paper No. GT2010-22454.
3.
Wilcox
,
M.
,
Baldwin
,
R.
,
Garcia-Hernandez
,
A.
, and
Brun
,
K.
,
2010
, “
Guideline for Gas Turbine Inlet Air Filtration Systems
,” Gas Machinery Research Council, Dallas, TX.
4.
Orhon
,
D.
,
Kurz
,
R.
,
Hiner
,
S.
, and
Benson
,
J.
,
2015
, “
Gas Turbine Air Filtration Systems for Offshore Applications
,”
Turbosymposium
, Houston, TX, Tutorial T11.
5.
Schroth
,
T.
,
Rothmann
,
A.
, and
Schmitt
,
D.
,
2007
, “
Nutzwert eines dreistufigen Luftfiltersystems mit innovativer Technologie fuer stationaere Gasturbinen
,”
VGB Powertech
,
87
, pp.
48
51
.
6.
CEN-CENELEC, 20002
, “
Particulate Air Filters for General Ventilation—Determination of the Filtration Performance
,” CEN-CENELEC, Brussels, Belgium, European Standard No. EN 779.
7.
Fuchs
,
N. A.
,
1964
,
The Mechanics of Aerosols
,
Pergamon Press
,
Oxford, UK
.
8.
Kurz
,
R.
,
Brun
,
K.
, and
Wollie
,
M.
,
2009
, “
Degradation Effects on Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
131
(
6
), p.
062401
.
9.
Syverud
,
E.
, and
Bakken
,
L. E.
,
2006
, “
The Impact of Surface Roughness on Axial Compressor Deterioration
,”
ASME
Paper No. GT2006-90004.
10.
Meher-Homji
,
C. B.
,
Chaker
,
M.
, and
Bromley
,
A. F.
,
2009
, “
The Fouling of Axial Flow Compressors—Causes, Effects, Susceptibility and Sensitivity
,”
ASME
Paper No. GT2009-59239.
11.
Vigueras Zuniga
,
M. O.
,
2007
, “
Analysis of Gas Turbine Compressor Fouling and Washing On Line
,”
Ph.D. thesis
, Cranfield University, Cranfield, UK.https://dspace.lib.cranfield.ac.uk/handle/1826/2448
12.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2011
, “
Numerical Analysis of the Effects of Non-Uniform Surface Roughness on Compressor Stage Performance
,”
ASME J. Eng. Gas Turbines Power
,
133
(
7
), p.
072402
.
13.
Aldi
,
N.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
,
Suman
,
A.
, and
Venturini
,
M.
,
2014
, “
Performance Evaluation of Non-Uniformly Fouled Axial Compressor Stages by Means of Computational Fluid Dynamics Analyses
,”
ASME J. Turbomach.
,
136
(
2
), p.
021016
.
14.
Suman
,
A.
,
Kurz
,
R.
,
Aldi
,
N.
,
Morini
,
M.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2016
, “
Quantitative Computational Fluid Dynamics Analyses of Particle Deposition on a Subsonic Axial Compressor Blade
,”
ASME J. Eng. Gas Turbines Power
,
138
(
1
), p.
012603
.
15.
Suman
,
A.
,
Kurz
,
R.
,
Aldi
,
N.
,
Morini
,
M.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2014
, “
Quantitative CFD Analyses of Particle Deposition on a Transonic Axial Compressor Blade—Part I: Particle Zones Impact
,”
ASME J. Turbomach.
,
137
(
2
), p.
021009
.
16.
Suman
,
A.
,
Morini
,
M.
,
Kurz
,
R.
,
Aldi
,
N.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2014
, “
Quantitative CFD Analyses of Particle Deposition on a Transonic Axial Compressor Blade—Part II: Impact Kinematics and Particle Sticking Analysis
,”
ASME J. Turbomach.
,
137
(
2
), p.
021010
.
17.
Nowak
,
L.
,
1992
, “
Computational Investigations of a NACA 0012 Airfoil in Low Reynolds Number Flows
,”
Master's thesis
, Naval Postgraduate School, Monterey, CA.http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA257300
18.
Petrović
,
D. V.
,
Mitrović
,
Č. B.
,
Trišovic
,
N. R.
, and
Golubović
,
Z. Z.
,
2011
, “
On the Particles Size Distributions of Diatomaceous Earth and Perlite Granulations
,”
Strojniški Vestn. J. Mech. Eng.
,
57
(
11
), pp.
843
850
.
19.
Dring
,
R. P.
,
Caspar
,
J. R.
, and
Suo
,
M.
,
1979
, “
Particle Trajectories Turbine Cascades
,”
AIAA J. Energy
,
3
(
3
), pp.
161
166
.
20.
Kurz
,
R.
,
1990
,
The Gas Flow Behind a Cascade With Nonuniform Pitch
, Vol.
101
,
ASME
,
New York
.
You do not currently have access to this content.