Incoming standards on NOx emissions are motivating many aero-engines manufacturers to adopt the lean burn combustion concept. However, several technological issues have to be faced in this transition, among which limited availability of air for cooling purpose and thermoacoustics phenomena. In this scenario, standard numerical design tools are not often capable of characterizing such devices. Thus, considering also the difficulties of experimental investigations in a highly pressurized and reactive environment, unsteady scale-resolved CFD methods are required to correctly understand the combustor performances. In this work, a set of scale-resolved simulations have been carried out on the Deutsches Zentrum für Luft- und Raumfahrt (DLR) generic single-sector combustor spray flame for which measurements both in nonreactive and reactive test conditions are available. Exploiting a two-phase Eulerian–Lagrangian approach combined with a flamelet generated manifold (FGM) combustion model, LES simulations have been performed in order to assess the potential improvements with respect to steady-state solutions. Additional comparisons have also been accomplished with scale-adaptive simulation (SAS) calculations based on eddy dissipation combustion model (EDM). The comparison with experimental results shows that the chosen unsteady strategies lead to a more physical description of reactive processes with respect to Reynolds-averaged Navier–Stokes (RANS) simulations. FGM model showed some limitations in reproducing the partially premixed nature of the flame, whereas SAS–EDM proved to be a robust modeling strategy within an industrial perspective. A new set of spray boundary conditions for liquid injection is also proposed whose reliability is proved through a detailed comparison against experimental data.

References

1.
Gicquel
,
L. Y. M.
,
Staffelbach
,
G.
, and
Poinsot
,
T.
,
2012
, “
Large Eddy Simulations of Gaseous Flames in Gas Turbine Combustion Chambers
,”
Prog. Energy Combust. Sci.
,
38
(
6
), pp. 782–817.
2.
Galpin
,
J.
,
Naudin
,
A.
,
Vervisch
,
L.
,
Angelberger
,
C.
,
Colin
,
O.
, and
Domingo
,
P.
,
2008
, “
Large Eddy Simulation of a Fuel Lean Premixed Turbulent Swirl-Burner
,”
Combust. Flame
,
155
(
1–2
), pp.
247
266
.
3.
Pierce
,
C. D.
, and
Moin
,
P.
,
2004
, “
Progress-Variable Approach for Large-Eddy Simulation of Non-Premixed Turbulent Combustion
,”
J. Fluid Mech.
,
504
, pp.
73
97
.
4.
Andreini
,
A.
,
Bianchini
,
C.
, and
Innocenti
,
A.
,
2014
, “
Large Eddy Simulation of a Bluff Body Stabilized Lean Premixed Flame
,”
J. Combust.
,
2014
, p. 710254.
5.
Chrigui
,
M.
,
Gounder
,
J.
,
Sadiki
,
A.
,
Masri
,
A. R.
, and
Janicka
,
J.
,
2012
, “
Partially Premixed Reacting Acetone Spray Using LES and FGM Tabulated Chemistry
,”
Combust. Flame
,
159
(
8
), pp.
2718
2741
.
6.
Andreini
,
A.
,
Bertini
,
D.
,
Facchini
,
B.
, and
Puggelli
,
S.
,
2015
, “
Large-Eddy Simulation of a Turbulent Spray Flame Using the Flamelet Generated Manifold Approach
,”
Energy Procedia
,
82
, pp.
395
401
.
7.
Boudier
,
G.
,
Gicquel
,
L. Y. M.
, and
Poinsot
,
T. J.
,
2008
, “
Effects of Mesh Resolution on Large Eddy Simulation of Reacting Flows in Complex Geometry Combustors
,”
Combust. Flame
,
155
(
1–2
), pp.
196
214
.
8.
Knudsen
,
E.
, and
Pitsch
,
H.
,
2010
, “
Large-Eddy Simulation for Combustion Systems: Modeling Approaches for Partially Premixed Flows
,”
Open Thermodyn. J.
,
4
(
1
), pp.
76
85
.
9.
Van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
,
2000
, “
Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds
,”
Combust. Sci. Technol.
,
161
(
1
), pp.
113
137
.
10.
Van Oijen
,
J. A.
,
Lammers
,
F. A.
, and
de Goey
,
L. P. H.
,
2001
, “
Modeling of Complex Premixed Burner Systems by Using Flamelet-Generated Manifolds
,”
Combust. Flame
,
127
(
3
), pp.
2124
2134
.
11.
Ramaekers
,
W. J. S.
,
Albrecht
,
B. A.
,
van Oijen
,
J. A.
,
de Goey
,
L. P. H.
, and
Eggels
,
R. L. G. M.
,
2005
, “
The Application of Flamelet Generated Manifolds in Modelling of Turbulent Partially Premixed Flames
,” (
unpublished
).https://www.researchgate.net/publication/242698561_The_application_of_Flamelet_Generated_Manifolds_in_modelling_of_turbulent_partially-premixed_ames
12.
Donini
,
A.
,
Bastiaans
,
R. J. M.
,
van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
, “
The Implementation of Five-Dimensional FGM Combustion Model for the Simulation of a Gas Turbine Model Combustor
,”
ASME
Paper No. GT2015-42037.
13.
Koch
,
R.
,
2011
, “
Spray Combustion
,”
Turbulent Combustion
(Lecture Series 2011-03),
von Karman Institute for Fluid Dynamics
, Rhode-Saint-Genèse, Belgium.http://www.gbv.de/dms/tib-ub-hannover/688520367.pdf
14.
Freitag
,
S.
,
Meier
,
U.
,
Heinze
,
J.
,
Behrendt
,
T.
, and
Hassa
,
C.
, “
Measurement of Initial Conditions of a Kerosene Spray From a Generic Aeroengine Injector at Elevated Pressure
,”
ILASS
—Europe 2010, 23rd Annual Conference on Liquid Atomization and Spray Systems
, Brno, Czech Republic, Sept., Paper No. 137.http://www.ilasseurope.org/ICLASS/ilass2010/FILES/FULL_PAPERS/137.pdf
15.
Meier
,
U.
,
Heinze
,
J.
,
Freitag
,
S.
, and
Hassa
,
C.
,
2012
, “
Spray and Flame Structure of a Generic Injector at Aeroengine Conditions
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p 031503.
16.
Strasser
,
W.
,
2011
, “
Towards the Optimization of a Pulsatile Three-Stream Coaxial Airblast Injector
,”
Int. J. Multiphase Flow
,
37
(
7
), pp.
831
844
.
17.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
18.
Menter
,
F. R.
,
1994
, “
Two Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
19.
Dhakal
,
T. P.
, and
Walters
,
D. K.
,
2011
, “
A Three-Equation Variant of the SST k-ω Model Sensitized to Rotation and Curvature Effects
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
111201
.
20.
Egorov
,
Y.
, and
Menter
,
F. R.
,
2007
, “
Development and Application of SST-SAS Turbulence Model in the DESIDER Project
,”
Second Symposium on Hybrid RANS-LES
Methods.http://cfd.mace.manchester.ac.uk/desider/symposium07/datafiles/Session_3/Session-3-1-Egorov.pdf
21.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Model
,”
Phys. Fluids
,
4
(
3
), pp.
633
635
.
22.
Ansys
,
2013
, “
Ansys Fluent 15.0 Theory Guide
,” Ansys, Canonsburg, PA.
23.
Lesieur
,
M.
, and
Metais
,
O.
,
1996
, “
New Trends in Large-Eddy Simulations of Turbulence
,”
Ann. Rev. Fluid Mech.
,
28
(
1
), pp.
45
82
.
24.
Ghosal
,
S.
,
Lund
,
T. S.
,
Moin
,
P.
, and
Akselvoll
,
K.
,
1995
, “
A Dynamic Localization Model for Large-Eddy Simulation of Turbulent Flows
,”
J. Fluid Mech.
,
286
(
1
), pp.
229
255
.
25.
Magnussen
,
B. F.
,
2005
, “
The Eddy Dissipation Concept—A Bridge Between Science and Technology
,”
ECCOMAS
Thematic Conference on Computational Combustion
, Lisbon, Portugal, June 21–24, pp.
21
24
.http://computit.no/filestore/_KFX_EddyDissipationC_Paper.pdf
26.
Widenhorn
,
A.
,
Noll
,
B.
, and
Aigner
,
M.
,
2009
, “
Numerical Characterization of the Reacting Flow in a Swirled Gas Turbine Model Combustor
,”
High Performance Computing in Science and Engineering’08
,
Springer
,
Berlin
.
27.
Magnussen
,
B. F.
, and
Hjertager
,
B. H.
,
1977
, “
On Mathematical Modeling of Turbulent Combustion With Special Emphasis on Soot Formation and Combustion
,”
Symp. (Int.) Combust.
,
16
(
1
), pp.
719
729
.
28.
Nakod
,
P.
,
Yadav
,
R.
,
Rajeshirke
,
P.
, and
Orsino
,
S.
,
2014
, “
A Comparative Computational Fluid Dynamics Study on Flamelet-Generated Manifold and Steady Laminar Flamelet Modeling for Turbulent Flames
,”
ASME J. Eng. Gas Turbines Power
,
136
(
8
), p.
081504
.
29.
Kundu
,
K.
,
Penko
,
P.
, and
Yang
,
S.
,
1998
, “
Simplified Jet-A/Air Combustion Mechanisms for Calculation of NO(x) Emissions
,”
AIAA
Paper No. 98-3986.
30.
Westbrook
,
C. K.
, and
Dryer
,
F. L.
,
1981
, “
Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames
,”
Combust. Sci. Technol.
,
27
(
1–2
), pp.
31
43
.
31.
Jones
,
W. P.
,
Marquis
,
A. J.
, and
Vogiatzaki
,
K.
,
2014
, “
Large-Eddy Simulation of Spray Combustion in a Gas Turbine Combustor
,”
Combust. Flame
,
161
(
1
), pp.
222
239
.
32.
Elghobashi
,
S.
,
1994
, “
On Predicting Particle-Laden Turbulent Flows
,”
Appl. Sci. Res.
,
52
(
4
), pp.
309
329
.
33.
Morsi
,
S. A.
, and
Alexander
,
A. J.
,
1972
, “
An Investigation of Particle Trajectories in Two-Phase Flow Systems
,”
J. Fluid Mech.
,
55
(
02
), pp.
193
208
.
34.
Joseph
,
D.
,
Belanger
,
J.
, and
Beavers
,
G. S.
,
1999
, “
Breakup of a Liquid Drop Suddenly Exposed to a High-Speed Airstream
,”
Int. J. Multiphase Flow
,
25
(
6
), pp.
1263
1303
.
35.
Gosman
,
A. D.
, and
Ioannides
,
E.
,
1983
, “
Aspects of Computer Simulation of Liquid-Fuelled Combustors
,”
J. Energy
,
7
(6), pp.
482
490
.
36.
Abramzon
,
B.
, and
Sirignano
,
W. A.
,
1989
, “
Droplet Vaporization Model for Spray Combustion Calculations
,”
Int. J. Heat Mass Transfer
,
32
(
9
), pp.
1605
1618
.
37.
Sazhin
,
S. S.
,
2006
, “
Advanced Models of Fuel Droplet Heating and Evaporation
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
162
214
.
38.
Hubbard
,
G. L.
,
Denny
,
V. E.
, and
Mills
,
A. F.
,
1975
, “
Droplet Evaporation: Effects of Transients and Variable Properties
,”
Int. J. Heat Mass Transfer
,
18
(
9
), pp.
1003
1008
.
39.
Rachner
,
M.
,
1998
, “
Die Stoffeigenschaften von Kerosin Jet A-1
,”
DLR
, Institut für Antriebstechnik, Köln-Porz, Germany.http://elib.dlr.de/906/
40.
Tabor
,
G. R.
, and
Baba-Ahmadi
,
M. H.
,
2010
, “
Inlet Conditions for Large Eddy Simulation: A Review
,”
Comput. Fluids
,
39
(
4
), pp.
553
567
.
41.
Strasser
,
W.
, and
Chamoun
,
G.
,
2014
, “
Wall Temperature Considerations in a Two-Stage Swirl Non-Premixed Furnace
,”
Prog. Comput. Fluid Dyn.
,
14
(
6
), pp.
386
397
.
42.
Walters
,
D. K.
,
Bhushan
,
S.
,
Alam
,
M. F.
, and
Thompson
,
D. S.
,
2013
, “
Investigation of a Dynamic Hybrid RANS/LES Modelling Methodology for Finite-Volume CFD Simulations
,”
Flow Turbul. Combust.
,
91
(
3
), pp.
643
667
.
43.
Pope
,
S. B.
,
2004
, “
Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows
,”
New J. Phys.
,
6
, p 35.
44.
Boudier
,
G.
,
Gicquel
,
L. Y. M.
, and
Poinsot
,
T. J.
,
2008
, “
Effects of Mesh Resolution on Large Eddy Simulation of Reacting Flows in Complex Geometry Combustors
,”
Combust. Flame
,
155
(1–2), pp.
196
214
.
45.
Davidson
,
L.
,
2009
, “
Large Eddy Simulations: How to Evaluate Resolution
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
1016
1025
.
46.
Yoshizawa
,
A.
,
1986
, “
Statistical Theory for Compressible Turbulent Shear Flows, With the Application to Subgrid Modeling
,”
Phys. Fluids
,
29
(
7
), pp.
2152
2164
.
47.
Goldin
,
G.
,
Ren
,
Z.
,
Forkel
,
H.
,
Lu
,
L.
,
Tangirala
,
V.
, and
Karim
,
H.
,
2012
, “
Modeling CO With Flamelet-Generated Manifolds—Part 1: Flamelet Configuration
,”
ASME
Paper No. GT2012-69528.
48.
Domingo
,
P.
,
Vervisch
,
L.
, and
Réveillon
,
J.
,
2005
, “
DNS Analysis of Partially Premixed Combustion in Spray and Gaseous Turbulent Flame-Bases Stabilized in Hot Air
,”
Combust. Flame
,
140
(
3
), pp.
172
195
.
49.
Gepperth
,
S.
,
Koch
,
R.
, and
Bauer
,
H. J.
,
2013
, “
Analysis and Comparison of Primary Droplet Characteristics in the Near Field of a Prefilming Airblast Atomizer
,”
ASME
Paper No. GT2013-94033.
You do not currently have access to this content.