Modern steam turbines need to operate efficiently and safely over a wide range of operating conditions. This paper presents a unique unprecedented set of time-resolved steam flowfield measurements from the exit of the last two stages of a low pressure (LP) steam turbine under various volumetric massflow conditions. The measurements were performed in the steam turbine test facility in Hitachi city in Japan. A newly developed fast response probe equipped with a heated tip to operate in wet steam flows was used. The probe tip is heated through an active control system using a miniature high-power cartridge heater developed in-house. Three different operating points (OPs), including two reduced massflow conditions, are compared and a detailed analysis of the unsteady flow structures under various blade loads and wetness mass fractions is presented. The measurements show that at the exit of the second to last stage the flow field is highly three dimensional. The measurements also show that the secondary flow structures at the tip region (shroud leakage and tip passage vortices) are the predominant sources of unsteadiness at 85% span. The high massflow operating condition exhibits the highest level of periodical total pressure fluctuation compared to the reduced massflow conditions at the inlet of the last stage. In contrast at the exit of the last stage, the reduced massflow operating condition exhibits the largest aerodynamic losses near the tip. This is due to the onset of the ventilation process at the exit of the LP steam turbine. This phenomenon results in three times larger levels of relative total pressure unsteadiness at 93% span, compared to the high massflow condition. This implies that at low volumetric flow conditions the blades will be subjected to higher dynamic load fluctuations at the tip region.

References

1.
Senoo
,
S.
, and
Ono
,
H.
,
2013
, “
Development of Design Method for Supersonic Turbine Aerofoils Near the Tip of Long Blades in Steam Turbines: Part 2—Configuration Details and Validation
,”
ASME
Paper No. GT2013-95827.
2.
Miller
,
R. J.
,
Moss
,
R. W.
,
Ainsworth
,
R. W.
, and
Horwood
,
C. K.
,
2003
, “
Time-Resolved Vane–Rotor Interaction in a High-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
125
(
1
), pp.
1
13
.
3.
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1998
, “
On the Interpretation of Measured Profile Losses in Unsteady—Turbine Blade Interaction Studies
,”
ASME J. Turbomach.
,
120
(
2
), pp.
276
284
.
4.
Megerle
,
B.
,
Stephen Rice
,
T.
,
McBean
,
I.
, and
Ott
,
P.
,
2012
, “
Numerical and Experimental Investigation of the Aerodynamic Excitation of a Model Low-Pressure Steam Turbine Stage Operating Under Low Volume Flow
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
012602
.
5.
Miyake
,
S.
,
Koda
,
I.
,
Yamamoto
,
S.
,
Sasao
,
Y.
,
Momma
,
K.
,
Miyawaki
,
T.
, and
Ooyama
,
H.
,
2014
, “
Unsteady Wake and Vortex Interactions in 3-D Steam Turbine Low Pressure Final Three Stages
,”
ASME
Paper No. GT2014-25491.
6.
Qi
,
M.
,
Yang
,
J.
,
Yang
,
R.
, and
Yang
,
H.
,
2013
, “
Investigation on Loading Pulsation of LP Long Blade Stage in Steam Turbine
,”
ASME
Paper No. GT2013-94652.
7.
Sigg
,
R.
,
Casey
,
M. V.
,
Mayer
,
J. F.
, and
Sürken
,
N.
,
2008
, “
The Influence of Lean and Sweep in a Low Pressure Steam Turbine: Analysis of Three Stages With a 3D CFD Model
,”
ASME
Paper No. GT2008-50161.
8.
Häfele
,
M.
,
Starzmann
,
J.
,
Grübel
,
M.
,
Schatz
,
M.
,
Vogt
,
D. M.
,
Drozdowski
,
R.
, and
Völker
,
L.
,
2014
, “
Numerical Investigation of the Impact of Part-Span Connectors on Aero-Thermodynamics in a Low Pressure Industrial Steam Turbine
,”
ASME
Paper No. GT2014-25177.
9.
Mistry
,
H.
,
Santhanakrishnan
,
M.
,
Liu
,
J.
,
Stein
,
A.
,
Dey
,
S.
, and
Slepski
,
J.
,
2011
, “
Aerodynamic Performance Assessment of Part-Span Connector of Last Stage Bucket of Low Pressure Steam Turbine
,”
ASME
Paper No. POWER2011-55265.
10.
Völker
,
L.
,
Casey
,
M.
,
Dunham
,
J.
, and
Stüer
,
H.
,
2008
, “
The Influence of Lean and Sweep in a Low Pressure Steam Turbine: Throughflow Modelling and Experimental Measurements
,”
ASME
Paper No. GT2008-50161.
11.
Parvizinia
,
M.
,
Berlich
,
C.
,
Truckenmüller
,
F.
, and
Stüer
,
H.
,
2004
, “
Numerical and Experimental Investigations Into the Aerodynamic Performance of a Supersonic Turbine Blade Profile
,”
ASME
Paper No. GT2004-53823.
12.
Tsukuda
,
T.
,
Sato
,
H.
,
Nomura
,
D.
,
Kawasaki
,
S.
, and
Shibukawa
,
N.
,
2014
, “
An Experimental Investigation of Thermal Wetness Loss in the Full Scale Size Low Pressure Turbine
,”
ASME
Paper No. GT2014-26012.
13.
Cai
,
X.
,
Ning
,
T.
,
Niu
,
F.
,
Wu
,
G.
, and
Song
,
Y.
,
2009
, “
Investigation of Wet Steam Flow in a 300 MW Direct Air-Cooling Steam Turbine. Part 1: Measurement Principles, Probe, and Wetness
,”
Proc. Inst. Mech. Eng., Part A
,
223
(
5
), pp.
625
634
.
14.
Shibukawa
,
N.
,
Iwasaki
,
Y.
,
Takada
,
Y.
,
Murakami
,
I.
,
Suzuki
,
T.
, and
Fukushima
,
T.
,
2014
, “
An Experimental Investigation of the Influence of Flash-Back Flow on Last Three Stages of Low Pressure Steam Turbines
,”
ASME
Paper No. GT2014-26897.
15.
Segawa
,
K.
,
Senoo
,
S.
,
Kudo
,
T.
,
Nakamura
,
T.
, and
Shibashita
,
N.
,
2012
, “
Steady and Unsteady Flow Measurements Under Low Load Conditions in a Low Pressure Model Steam Turbine
,”
ASME
Paper No. POWER2012-54862.
16.
Gerschütz
,
W.
,
Casey
,
M.
, and
Truckenmüller
,
F.
,
2005
, “
Experimental Investigations of Rotating Flow Instabilities in the Last Stage of a Low-Pressure Model Steam Turbine During Windage
,”
Proc. Inst. Mech. Eng., Part A
,
219
(
6
), pp.
499
510
.
17.
Kuperfschmied
,
P.
,
Köppel
,
P.
,
Roduner
,
C.
, and
Gyarmathy
,
G.
,
2000
, “
On the Development and Application of the FRAP (Fast-Response Aerodynamic Probe) System for Turbomachines—Part 1: The Measurement System
,”
ASME J. Turbomach.
,
122
(
3
), pp.
505
516
.
18.
Pfau
,
A.
,
Schlienger
,
J.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2002
, “
Virtual Four Sensor Fast Response Aerodynamic Probe (FRAP)
,”
16th Symposioum on Measuring Techniques in Transonic and Supersonic Flow in Cascades and Turbomachines
,
Cambridge, UK
, Sept. 23–24, Paper No. 5-1.
19.
Lenherr
,
C.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2010
, “
High Temperature Fast Response Aerodynamic Probe
,”
ASME J. Eng. Gas Turbines Power
,
133
(
1
), p.
011603
.
20.
Mansour
,
M.
,
Kocer
,
G.
,
Lenherr
,
C.
,
Chokani
,
N.
, and
Abhari
,
R. S.
,
2011
, “
Seven-Sensor Fast-Response Probe for Full-Scale Wind Turbine Flowfield Measurements
,”
ASME J. Eng. Gas Turbines Power
,
133
(
8
), p.
081601
.
21.
Bosdas
,
I.
,
Mansour
,
M.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, “
A Fast Response Miniature Probe for Wet Steam Flow Field Measurements
,”
Meas. Sci. Technol.
(submitted).
22.
Gallington
,
R. W.
,
1980
, “
Measurement of Very Large Flow Angles With Non-Nulling Seven-Hole Probe
,” Aeronautics Digest, Spring/Summer, Paper No. USAFA-TR-80-17, pp. 60–80.
23.
Behr
,
T.
,
2007
, “
Control of Rotor Tip Leakage and Secondary Flow by Casing Air Injection in Unshrouded Axial Turbine
,” DS dissertation, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland, Paper No.
ETH
No. 17283.
24.
Porreca
,
L.
,
Hollenstein
,
M.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2007
, “
Turbulence Measurements and Analysis in a Multistage Axial Turbine
,”
J. Propul. Power
,
23
(
1
), pp.
227
234
.
25.
Chaluvadi
,
V. S. P.
,
Kalfas
,
A. I.
,
Banieghbal
,
M. R.
,
Hodson
,
H. P.
, and
Denton
,
J. D.
,
2001
, “
Blade-Row Interaction in a High-Pressure Turbine
,”
J. Propul. Power
,
17
(
4
), pp.
892
901
.
26.
Sigg
,
R.
,
Heinz
,
C.
,
Casey
,
M. V.
, and
Sürken
,
N.
,
2009
, “
Numerical and Experimental Investigation of a Low-Pressure Steam Turbine During Windage
,”
J. Power Energy
,
223
(
6
), pp.
697
708
.
You do not currently have access to this content.