Brush seals require custom design and tailoring due to their behavior driven by flow dynamic, which has many interacting design parameters, as well as their location in challenging regions of turbomachinery. Therefore, brush seal technology has not reached a conventional level across the board standard. However, brush seal geometry generally has a somewhat consistent form. Since this consistent form does exist, knowledge of the leakage performance of brush seals depending on specific geometric dimensions and operating conditions is critical and predictable information in the design phase. However, even though there are common facts for some geometric dimensions available to designers, open literature has inadequate quantified information about the effect of brush seal geometric dimensions on leakage. This paper presents a detailed computational fluid dynamics (CFD) investigation quantifying the leakage values for some geometric variables of common brush seal forms functioning in some operating conditions. Analyzed parameters are grouped as follows: axial dimensions, radial dimensions, and operating conditions. The axial dimensions and their ranges are front plate thickness (z1 = 0.040–0.150 in.), distance between front plate and bristle pack (z2 = 0.010–0.050 in.), bristle pack thickness (z3 = 0.020–0.100 in.), and backing plate thickness (z4 = 0.040–0.150 in.). The radial dimensions are backing plate fence height (r1 = 0.020–0.100 in.), front plate fence height (r2 = 0.060–0.400 in.), and bristle free height (r3 = 0.300–0.500 in.). The operating conditions are chosen as clearance (r0 = 0.000–0.020 in.), pressure ratio (Rp = 1.5–3.5), and rotor speed (n = 0–40 krpm). CFD analysis was carried out by employing compressible turbulent flow in 2D axisymmetric coordinate system. The bristle pack was treated as a porous medium for which flow resistance coefficients were calibrated by using literature based test data. Selected dimensional and operational parameters for a common brush seal form were investigated, and their effects on leakage performance were quantified. CFD results show that, in terms of leakage, the dominant geometric dimensions were found to be the bristle pack thickness and the backing plate fence height. It is also clear that physical clearance dominates leakage performance, when compared to the effects of other geometric dimensions. The effects of other parameters on brush seal leakage were also analyzed in a comparative manner.

References

1.
Dogu
,
Y.
,
2005
, “
Investigation of Brush Seal Flow Characteristics Using Bulk Porous Medium Approach
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
136
144
.
2.
Chupp
,
R. E.
, and
Dowler
,
C. A.
,
1993
, “
Performance Characteristics of Brush Seals for Limited-Life Engines
,”
ASME J. Eng. Gas Turbines Power
,
115
(
2
), pp.
390
396
.
3.
Bayley
,
F. J.
, and
Long
,
C. A.
,
1993
, “
A Combined Experimental and Theoretical Study of Flow and Pressure Distributions in a Brush Seal
,”
ASME J. Eng. Gas Turbines Power
,
115
(
2
), pp.
404
410
.
4.
Chew
,
J. W.
,
Lapworth
,
B. L.
, and
Millener
,
P. J.
,
1995
, “
Mathematical Modelling of Brush Seals
,”
Int. J. Heat Fluid Flow
,
16
(
6
), pp.
493
500
.
5.
Turner
,
M. T.
,
Chew
,
J. W.
, and
Long
,
C. A.
,
1998
, “
Experimental Investigation and Mathematical Modelling of Clearance Brush Seals
,”
ASME J. Eng. Gas Turbines Power
,
120
(
3
), pp.
573
579
.
6.
Chen
,
L. H.
,
Wood
,
P. E.
,
Jones
,
T. V.
, and
Chew
,
J. W.
,
1999
, “
An Iterative CFD and Mechanical Brush Seals Model and Comparison With Experimental Results
,”
ASME J. Eng. Gas Turbines Power
,
121
(
4
), pp.
656
662
.
7.
Chen
,
L. H.
,
Wood
,
P. E.
,
Jones
,
T. V.
, and
Chew
,
J. W.
,
2000
, “
Detailed Experimental Studies of Flow in Large Scale Brush Seal Model and a Comparison With CFD Predictions
,”
ASME J. Eng. Gas Turbines Power
,
122
(
4
), pp.
672
679
.
8.
Dogu
,
Y.
, and
Aksit
,
M. F.
,
2006
, “
Effects of Geometry on Brush Seal Pressure and Flow Fields—Part I: Front Plate Configurations
,”
ASME J. Turbomach.
,
128
(
2
), pp.
367
378
.
9.
Dogu
,
Y.
, and
Aksit
,
M. F.
,
2006
, “
Effects of Geometry on Brush Seal Pressure and Flow Fields—Part II: Backing Plate Configurations
,”
ASME J. Turbomach.
,
128
(
2
), pp.
379
389
.
10.
Dogu
,
Y.
, and
Aksit
,
M. F.
,
2006
, “
Brush Seal Temperature Distribution Analysis
,”
ASME J. Eng. Gas Turbines Power
,
128
(
3
), pp.
599
609
.
11.
Pugachev
,
A. O.
, and
Helm
,
P.
,
2009
, “
Calibration of Porous Medium Models for Brush Seals
,”
Proc. Inst. Mech. Eng., Part A
,
223
(
1
), pp.
83
91
.
12.
Dogu
,
Y.
,
Aksit
,
M. F.
,
Demiroglu
,
M.
, and
Dinc
,
O. S.
,
2008
, “
Evaluation of Flow Behavior for Clearance Brush Seals
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
012507
.
13.
Qiu
,
B.
, and
Li
,
J.
,
2013
, “
Numerical Investigations on the Heat Transfer Behavior of Brush Seals Using Combined Computational Fluid Dynamics and Finite Element Method
,”
ASME J. Heat Transfer
,
135
(
12
), p.
122601
.
14.
Pekris
,
M. J.
,
Franceschini
,
G.
, and
Gillespie
,
D. R. H.
,
2014
, “
An Investigation of Flow, Mechanical, and Thermal Performance of Conventional and Pressure-Balanced Brush Seals
,”
ASME J. Eng. Gas Turbines Power
,
136
(
6
), p.
062502
.
15.
Ansys
,
2011
, “
Porous Media Conditions
,”
Ansys-Fluent User's Guide
, Canonsburg, PA.
16.
Chupp
,
R. E.
, and
Holle
,
G. F.
,
1996
, “
Generalizing Circular Brush Seal Leakage Through a Randomly Distributed Bristle Bed
,”
ASME J. Turbomach.
,
118
(
1
), pp.
153
161
.
You do not currently have access to this content.