Abstract

The current article introduces a physics-based revolutionary technology that enables energy efficiency and environmental compatibility goals of future generation aircraft and power generation gas turbines (GTs). An ultrahigh efficiency GT technology (UHEGT) is developed, where the combustion process is no longer contained in isolation between the compressor and turbine, rather distributed in three stages and integrated within the first three high pressure (HP) turbine stator rows. The proposed distributed combustion results in high thermal efficiencies, which cannot be achieved by conventional GT engines. Particular fundamental issues of aerothermodynamic design, combustion, and heat transfer are addressed in this study along with comprehensive computational fluid dynamics (CFD) simulations. The aerothermodynamic study shows that the UHEGT-concept improves the thermal efficiency of GTs 5–7% above the current most advanced high efficiency GT engines, such as Alstom GT24. Multiple configurations are designed and simulated numerically to achieve the optimum configuration for UHEGT. CFD simulations include combustion process in conjunction with a rotating turbine row. Temperature and velocity distributions are investigated as well as power generation, pressure losses, and NOx emissions. Results show that the configuration in which fuel is injected into the domain through cylindrical tubes provides the best combustion process and the most uniform temperature distribution at the rotor inlet.

References

1.
Schobeiri
,
M. T.
,
1986
, “
Prozessoptimierung für die Kombianlagen
,” BBC–Internal Classified Report No. BBC-TN-86-112.
2.
Schobeiri
,
M. T.
,
1982
, “
Dynamisches Verhalten der Luftspeichergasturbine Huntorf bei einem Lastabwurf mit Schnellabschaltung
,” Brown Boveri, Technical Report No. TA-58.
3.
Schobeiri
,
M. T.
, and
Haselbacher
,
H.
,
1985
, “
Transient Analysis of GAS Turbine Power Plant, Using the Huntorf Compressed Air Storage Plant as an Example
,”
ASME
Paper No. 85-GT-197.
4.
Schobeiri
,
T.
,
1986
, “
A General Computational Method for Simulation and Prediction of Transient Behavior of Gas Turbines
,”
ASME
Paper No. 86-GT-180.
5.
Schobeiri
,
M. T.
,
2012
,
Turbomachinery Flow Physics and Dynamic Performance
, Second and Enhanced ed.,
Springer-Verlag
,
New York
.
6.
Schobeiri
,
M. T.
,
1999
The Ultra-High Efficiency Gas Turbine Engine With Stator Internal Combustion, UHEGT
,” US Patent pending, No. 1389-TEES-99.
7.
Schobeiri
,
M. T.
,
2014
The Ultra-High Efficiency Gas Turbine Engine With Stator Internal Combustion, UHEGT
,” U.S. patent application 62/046,542.
8.
EPRIGEN
,
1998
,
Thermal Performance of the ABB GT24 Gas Turbine in Peaking Service at the Gilbert Station of GPU Energy
,
EPRIGEN
,
Palo Alto, CA
.
9.
Thornburg
,
H.
,
Sekar
,
B.
,
Zelina
,
J.
,
Lin
,
C.
, and
Holder
,
R.
,
2008
, “
Prediction of Inter-Turbine Burner (Itb) Performance With Curved Radial Vane Cavity at Various Equivalence Ratios
,”
ASME
Paper No. GT2008-50192.
10.
Schobeiri
,
M. T.
,
1989
, “
On the Stability Behavior of Vortex Flows in Turbomachinery
,”
Z. Flugwiss. Weltraumforsch.
,
13
(
1989
), pp.
233
239
(in German).
11.
Schobeiri
,
M. T.
, and
Özturk
,
B.
,
2004
, “
Experimental Study of the Effect of the Periodic Unsteady Wake Flow on Boundary Layer Development, Separation, and Re-Attachment Along the Surface of a Low Pressure Turbine Blade
,”
ASME J. Turbomach.
,
126
(
4
), pp.
663
676
.
12.
Schobeiri
,
M. T.
, and
Chakka
,
P.
,
2002
, “
Prediction of Turbine Blade Heat Transfer and Aerodynamics Using Unsteady Boundary Layer Transition Model
,”
Int. J. Heat Mass Transfer
,
45
(
4
), pp.
815
829
.
13.
Schobeiri
,
M. T.
,
Read
,
K.
, and
Lewalle
,
J.
,
2003
, “
Effect of Unsteady Wake Passing Frequency on Boundary Layer Transition, Experimental Investigation and Wavelet Analysis
,”
ASME J. Fluids Eng.
,
125
(
2
), pp.
251
266
.
14.
Wright
,
L.
, and
Schobeiri
,
M. T.
,
1999
, “
The Effect of Periodic Unsteady Flow on Boundary Layer and Heat Transfer on a Curved Surface
,”
ASME J. Heat Transfer
,
121
(
1
), pp.
22
33
.
15.
Färber
,
J.
,
Koch
,
R.
,
Bauer
,
H.
,
Hase
,
M.
, and
Krebs
,
W.
,
2010
, “
Effects of Pilot Fuel and Liner Cooling on the Flame Structure in a Full Scale Swirl-Stabilized Combustion Setup
,”
ASME J. Eng. Gas Turbines Power
,
132
(
9
), p.
091501
.
16.
Lucca-Negro
,
O.
, and
O'Doherty
,
T.
,
2001
, “
Vortex Breakdown: A Review
,”
Prog. Energy Combust. Sci.
,
27
(
4
), pp.
431
481
.
17.
Lefebvre
,
A. H.
,
1999
,
Gas Turbine Combustion
, 2nd ed.,
Taylor and Francis, Philadelpha
.
18.
Keller
,
J.
,
Egli
,
W.
, and
Althaus
,
R.
,
1988
, “
Vortex Breakdown as a Fundamental Element of Vortex Dynamics
,”
Z. Angew. Math. Phys.
,
39
(
3
), pp.
404
440
.
19.
Keller
,
J. J.
,
Sattelmayer
,
T.
, and
Thueringer
,
F.
, “
Double-Cone Burners for Gas Turbine Type 9 Retrofit Application
,”
19th International Congress on Combustion Engines
,
CIMAC
,
Florence
.
20.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
,
1984
,
Swirl Flows
,
Abacus,
Tunbridge Wells, Kent, England
.
21.
Anacleto
,
P. M.
,
Fernandes
,
E. C.
,
Heitor
,
M. V.
, and
Shtork
,
S. I.
,
2003
, “
Swirl Flow Structure and Flame Characteristics in a Model Lean Premixed Combustor
,”
Combust. Sci. Technol.
,
175
(
8
), pp.
1369
1388
.
22.
Beer
,
J. M.
, and
Chigier
,
N. A.
,
1972
,
Combustion Aerodynamics
,
Wiley, Halstead Press Division
,
New York
.
23.
Duwig
,
C.
,
Ducruix
,
S.
, and
Veynante
,
D.
,
2012
, “
Studying the Stabilization Dynamics of Swirling Partially Premixed Flames by Proper Orthogonal Decomposition
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p. 101501.
24.
Galley
,
D.
,
Ducruix
,
S.
,
Lacas
,
F.
, and
Veynante
,
D.
,
2011
, “
Mixing and Stabilization Study of a Partially Premixed Swirling Flame Using Laser Induced Fluorescence
,”
Combust. Flame
,
158
(
1
), pp.
155
171
.
25.
Wurm
,
B.
,
Schulz
,
A.
,
Bauer
,
H.
, and
Gerendas
,
M.
,
2012
, “
Impact of Swirl Flow on the Cooling Performance of an Effusion Cooled Combustor Liner
,”
ASME J. Eng. Gas Turbines Power
,
134
(
12
), p.
121503
.
26.
Wurm
,
B.
,
Schulz
,
A.
, and
Bauer
,
H.
,
2009
, “
A New Test Facility for Investigating the Interaction Between Swirl Flow and Wall Cooling Films in Combustors
,”
ASME
Paper No. GT2009-59961.
27.
Beard
,
P.
,
Smith
,
A.
, and
Povey
,
T.
,
2014
, “
Effect of Combustor Swirl on Transonic High Pressure Turbine Efficiency
,”
ASME J. Turbomach.
,
136
(
1
), p.
011002
.
28.
Claypole
,
T.
,
1980
, “
Coherent Structures in Swirl Generators and Combustors
,”
Proceedings of the ASME Symposium Vortex Flows, Winter Annual Meeting
, Nov. 16–21, Chicago, IL.
29.
Lilley
,
D.
,
1977
, “
Swirl Flows in Combustion: A Review
,”
AIAA J.
,
15
(
8
), pp.
1063
1078
.
30.
Claypole
,
T. C.
, and
Syred
,
N.
,
1981
, “
The Effect of Swirl Burner Aerodynamics on NOx Formation
,”
Symp. (Int.) Combust.
,
18
(
1
), pp.
81
89
.
31.
Jenny
,
P.
,
Lenherr
,
C.
,
Abhari
,
R. S.
, and
Kalfas
,
A.
,
2012
, “
Effect of Hot Streak Migration on Unsteady Blade Row Interaction in an Axial Turbine
,”
ASME J. Turbomach.
,
134
(
5
), p.
051020
.
32.
Mathison
,
R.
,
Haldeman
,
C.
, and
Dunn
,
M.
,
2010
, “
Aerodynamics and Heat Transfer for a Cooled One and One-Half Stage High-Pressure Turbine–Part I: Vane Inlet Temperature Profile Generation and Migration
,”
Proceedings of ASME Turbo Expo 2010: Power for Land, Sea and Air
, Jun. 14–18, Glasgow.
33.
Mathison
,
R.
,
Haldeman
,
C.
, and
Dunn
,
M.
,
2010
, “
Aerodynamics and Heat Transfer for a Cooled One and One-Half Stage High-Pressure Turbine—Part II: Influence of Inlet Temperature Profile on Blade Row and Shroud
,”
ASME
Paper No. GT2010-22718.
34.
Simone
,
S.
,
Montomoli
,
F.
,
Martelli
,
F.
,
Chana
,
K.
,
Qureshi
,
I.
, and
Povey
,
T.
,
2012
, “
Analysis on the Effect of a Nonuniform Inlet Profile on Heat Transfer and Fluid Flow in Turbine Stages
,”
ASME J. Turbomach.
,
134
(
1
), p.
011012
.
35.
Barringer
,
M.
,
Thole
,
K.
, and
Polanka
,
M.
,
2009
, “
Effects of Combustor Exit Profiles on Vane Aerodynamic Loading and Heat Transfer in a High Pressure Turbine
,”
ASME J. Turbomach.
,
131
(
2
), p.
021008
.
36.
Khanal
,
B.
,
He
,
L.
,
Northall
,
J.
, and
Adami
,
P.
,
2013
, “
Analysis of Radial Migration of Hot-Streak in Swirling Flow Through High-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
135
(
4
), p.
041005
.
37.
Chibli
,
H. A.
,
Abdelfattah
,
S. A.
,
Schobeiri
,
M. T.
, and
Kang
,
C.
,
2009
, “
An Experimental and Numerical Study of the Effects of Flow Incidence Angles on the Performance of a Stator Blade Cascade of a High Pressure Steam Turbine
,”
ASME
Paper No. GT2009-59131.
38.
Schobeiri
,
M. T.
, and
Nikparto
,
A.
,
2014
, “
A Comparative Numerical Study of Aerodynamics and Heat Transfer on Transitional Flow Around a Highly Loaded Turbine Blade With Flow Separation Using RANS, URANS and LES
,”
ASME
Paper No. GT2014-25828.
39.
Rezasoltani
,
M.
,
Lu
,
K.
,
Schobeiri
,
M.
, and
Han
,
J. C.
,
2015
, “
A Combined Experimental and Numerical Study of the Turbine Blade Tip Film Cooling Effectiveness Under Rotation Condition
,”
ASME J. Turbomach.
,
137
(
5
), p.
051009
.
40.
ansys CFX-Solver Modeling Guide, Release 15.0, Nov. 2013, ANSYS.
41.
Shang
,
T.
, and
Epstein
,
A. H.
,
1997
, “
Analysis of Hot Streak Effects on Turbine Rotor Heat Load
,”
ASME J. Turbomach.
,
119
(
3
), pp.
544
553
.
42.
Qureshi
,
I.
,
Beretta
,
A.
, and
Povey
,
T.
,
2011
, “
Effect of Simulated Combustor Temperature Nonuniformity on HP Vane and End Wall Heat Transfer: An Experimental and Computational Investigation
,”
ASME J. Eng. Gas Turbines Power
,
133
(
3
), p.
031901
.
43.
Lefebvre
,
A. H.
,
1995
, “
The Role of Fuel Preparation in Low-Emission Combustion
,”
ASME J. Eng. Gas Turbines Power
,
117
(
4
), pp.
617
654
.
You do not currently have access to this content.