This review summarizes research concerned with the ingress of hot mainstream gas through the rim seals of gas turbines. It includes experimental, theoretical, and computational studies conducted by many institutions, and the ingress is classified as externally induced (EI), rotationally induced (RI), and combined ingress (CI). Although EI ingress (which is caused by the circumferential distribution of pressure created by the vanes and blades in the turbine annulus) occurs in all turbines, RI and CI ingress can be important at off-design conditions and for the inner seal of a double-seal geometry. For all three types of ingress, the equations from a simple orifice model are shown to be useful for relating the sealing effectiveness (and therefore the amount of hot gas ingested into the wheel-space of a turbine) to the sealing flow rate. In this paper, experimental data obtained from different research groups have been transformed into a consistent format and reviewed using the orifice model equations. Most of the published results for sealing effectiveness have been made using concentration measurements of a tracer gas (usually CO2) on the surface of the stator, and—for a large number of tests with single and double seals—the measured distributions of effectiveness with sealing flow rate are shown to be consistent with those predicted by the model. Although the flow through the rim seal can be treated as inviscid, the flow inside the wheel-space is controlled by the boundary layers on the rotor and stator. Using boundary-layer theory and the similarity between the transfer of mass and energy, a theoretical model has been developed to relate the adiabatic effectiveness on the rotor to the sealing effectiveness of the rim seal. Concentration measurements on the stator and infrared (IR) measurements on the rotor have confirmed that, even when ingress occurs, the sealing flow will help to protect the rotor from the effect of hot-gas ingestion. Despite the improved understanding of the “ingress problem,” there are still many unanswered questions to be addressed.

References

1.
Wang
,
C. Z.
,
Johnson
,
B. V.
,
Mathiyalagan
,
S. P.
,
Glahn
,
J. A.
, and
Cloud
,
D. F.
,
2012
, “
Rim Seal Ingestion in a Turbine Stage From 360-Degree Time-Dependent Numerical Solutions
,”
ASME J. Turbomach.
,
136
(
3
), p.
031007
.
2.
Palafox
,
P.
,
Ding
,
Z.
,
Bailey
,
J.
,
Vanduser
,
T.
,
Kirtley
,
K.
,
Moore
,
K.
, and
Chupp
,
R.
,
2013
, “
A New 1.5-Stage Turbine Wheelspace Hot Gas Ingestion Rig (HGIR)—Part I: Experimental Test Vehicle, Measurement Capability and Baseline Results
,”
ASME
Paper No. GT2013-96020.
3.
Barringer
,
M.
,
Coward
,
A.
,
Clark
,
K.
,
Thole
,
K. A.
,
Schmitz
,
J.
,
Wagner
,
J.
,
Alvin
,
M. A.
,
Burke
,
P.
, and
Dennis
,
R.
,
2014
, “
The Design of a Steady Aero Thermal Research Turbine (START) for Studying Secondary Flow Leakages and Airfoil Heat Transfer
,”
ASME
Paper No. GT2014-25570.
4.
Childs
,
P. R. N.
,
2011
,
Rotating Flow
,
Butterworth-Heinemann
,
Oxford, UK
.
5.
Johnson
,
B. V.
,
Mack
,
G. J.
,
Paolillo
,
R. E.
, and
Daniels
,
W. A.
,
1994
, “
Turbine Rim Seal Gas Path Flow Ingestion Mechanisms
,”
AIAA
Paper No. 94-2703.
6.
Owen
,
J. M.
, and
Rogers
,
R. H.
,
1989
,
Flow and Heat Transfer in Rotating-Disc Systems: Rotor-Stator Systems
, Vol.
1
,
Research Studies Press
,
Taunton, UK
.
7.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals: Part 1, Rotationally-Induced Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031005
.
8.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals: Part 2, Externally-Induced and Combined Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031006
.
9.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part 1: Externally-Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021012
.
10.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part 2: Rotationally-Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021013
.
11.
Zhou
,
K.
,
Wood
,
S. N.
, and
Owen
,
J. M.
,
2013
, “
Statistical and Theoretical Models of Ingestion Through Turbine Rim Seals
,”
ASME J. Turbomach.
,
135
(
2
), p.
021014
.
12.
Hamabe
,
K.
, and
Ishida
,
K.
,
1992
, “
Rim Seal Experiments and Analysis of a Rotor-Stator System With Nonaxisymmetric Main Flow
,”
ASME
Paper No. 92-GT-160.
13.
Chew
,
J. W.
,
Green
,
T.
, and
Turner
,
A. B.
,
1994
, “
Rim Sealing of Rotor-Stator Wheelspaces in the Presence of External Flow
,”
ASME
Paper No. 94-GT-126.
14.
Scanlon
,
T.
,
Wilkes
,
J.
,
Bohn
,
D.
, and
Gentilhomme
,
O.
,
2004
, “
A Simple Method of Estimating Ingestion of Annulus Gas Into a Turbine Rotor Stator Cavity in the Presence of External Pressure Gradients
,”
ASME
Paper No. GT2004-53097.
15.
Johnson
,
B. V.
,
Jakoby
,
R.
,
Bohn
,
D. E.
, and
Cunat
,
D.
,
2006
, “
A Method for Estimating the Influence of Time-Dependent Vane and Blade Pressure Fields on Turbine Rim Seal Ingestion
,”
ASME J. Turbomach.
,
131
(
2
), p.
021005
.
16.
Johnson
,
B. V.
,
Wang
,
C. Z.
, and
Roy
,
R. P.
,
2008
, “
A Rim Seal Orifice Model With Two Cd's and Effects of Swirl in Seals
,”
ASME
Paper No. GT2008-50650.
17.
Balasubramanian
,
J.
,
Pathak
,
P. S.
,
Thiagarajan
,
J. K.
,
Singh
,
P.
,
Roy
,
R. P.
, and
Mirzamoghadam
,
A. V.
,
2015
, “
Experimental Study of Ingestion in the Rotor–Stator Disk Cavity of a Subscale Axial Turbine Stage
,”
ASME J. Turbomach.
,
137
(
9
), p.
091010
.
18.
Bayley
,
F. J.
, and
Owen
,
J. M.
,
1970
, “
Fluid Dynamics of a Shrouded Disk System With a Radial Outflow of Coolant
,”
ASME J. Eng. Power
,
92
(
3
), pp.
335
341
.
19.
Graber
,
D. J.
,
Daniels
,
W. A.
, and
Johnson
,
B. V.
,
1987
, “
Disc Pumping Test, Final Report
,” Air Force Wright Aeronautical Laboratories, Wright-Patterson AFB, OH, Report No. AFWAL-TR-87-2050.
20.
Daniels
,
W. A.
,
Johnson
,
B. V.
,
Graber
,
D. J.
, and
Martin
,
R. J.
,
1992
, “
Rim Seal Experiments and Analysis for Turbine Applications
,”
ASME J. Turbomach.
,
114
(
2
), pp.
426
432
.
21.
Abe
,
T.
,
Kikuchi
,
J.
, and
Takeuchi
,
H.
,
1979
, “
An Investigation of Turbine Disk Cooling (Experimental Investigation and Observation of Hot Gas Flow Into a Wheel Space)
,” 13th International Congress on Combustion Engines (CIMAC), Vienna, Austria, May 7–10, Paper No. GT30.
22.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems—Part 2: The Performance of Seals in a Quasiaxisymmetric External Flow
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
106
112
.
23.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems—Part 3: The Effect of Nonaxisymmetric External Flow on Seal Performance
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
113
117
.
24.
Dadkhah
,
S.
,
Turner
,
A. B.
, and
Chew
,
J. W.
,
1992
, “
Performance of Radial Clearance Rim Seals in Upstream and Downstream Rotor-Stator Wheelspaces
,”
ASME J. Turbomach.
,
114
(
2
), pp.
439
445
.
25.
Green
,
T.
, and
Turner
,
A. B.
,
1994
, “
Ingestion Into the Upstream Wheelspace of an Axial Turbine Stage
,”
ASME J. Turbomach.
,
116
(
2
), pp.
327
332
.
26.
Hills
,
N. J.
,
Green
,
T.
,
Turner
,
A. B.
, and
Chew
,
J. W.
,
1997
, “
Aerodynamics of Turbine Rim-Seal Ingestion
,”
ASME
Paper No. 97-GT-268.
27.
Hills
,
N. J.
,
Chew
,
J. W.
, and
Turner
,
A. B.
,
2002
, “
Computational and Mathematical Modeling of Turbine Rim Seal Ingestion
,”
ASME J. Turbomach.
,
124
(
2
), pp.
306
315
.
28.
Gentilhomme
,
O.
,
Hills
,
N. J.
,
Turner
,
A. B.
, and
Chew
,
J. W.
,
2002
, “
Measurement and Analysis of Ingestion Through a Rim Seal
,”
ASME J. Turbomach.
,
125
(
3
), pp.
505
512
.
29.
Bayley
,
F. J.
, and
Childs
,
P. R. N.
,
1997
, “
Prediction of Ingress Rates to Turbine and Compressor Wheelspaces
,”
Int. J. Heat Fluid Flow
,
18
(
2
), pp.
218
228
.
30.
Bohn
,
D. E.
,
Johann
,
E.
, and
Kruger
,
U.
,
1995
, “
Experimental and Numerical Investigations of Aerodynamic Aspects of Hot Gas Ingestion in Rotor-Stator Systems With Superimposed Cooling Mass Flow
,”
ASME
Paper No. 95-GT-143.
31.
Bohn
,
D. E.
,
Rudzinski
,
B.
,
Sürken
,
N.
, and
Gärtner
,
W.
,
1999
, “
Influence of Rim Seal Geometry on Hot Gas Ingestion Into the Upstream Cavity of an Axial Turbine Stage
,”
ASME
Paper No. 99-GT-248.
32.
Bohn
,
D.
,
Rudzinski
,
B.
,
Sürken
,
N.
, and
Gärtner
,
W.
,
2000
, “
Experimental and Numerical Investigation of the Influence of Rotor Blades on Hot Gas Ingestion Into the Upstream Cavity of an Axial Turbine Stage
,”
ASME
Paper No. 2000-GT-0284.
33.
Bohn
,
D. E.
, and
Wolff
,
M.
,
2003
, “
Improved Formulation to Determine Minimum Sealing Flow—Cw, Min—for Different Sealing Configurations
,”
ASME
Paper No. GT2003-38465.
34.
Bohn
,
D. E.
,
Decker
,
A.
,
Hongwei
,
M.
, and
Wolff
,
M.
,
2003
, “
Influence of Sealing Air Mass Flow on the Velocity Distribution in and Inside the Rim Seal of the Upstream Cavity of a 1.5-Stage Turbine
,”
ASME
Paper No. GT2003-38459.
35.
Jakoby
,
R.
,
Zierer
,
T.
,
Lindblad
,
K.
,
Larsson
,
J.
,
deVito
,
L.
,
Bohn
,
D. E.
,
Funcke
,
J.
, and
Decker
,
A.
,
2004
, “
Numerical Simulation of the Unsteady Flow Field in an Axial Gas Turbine Rim Seal Configuration
,”
ASME
Paper No. GT2004-53829.
36.
Owen
,
J. M.
, and
Rogers
,
R. H.
,
1995
,
Flow and Heat Transfer in Rotating Disc Systems: Rotating Cavities
, Vol.
2
,
Research Studies Press
,
Taunton, UK
.
37.
Bohn
,
D. E.
,
Decker
,
A.
,
Ohlendorf
,
N.
, and
Jakoby
,
R.
,
2006
, “
Influence of an Axial and Radial Rim Seal Geometry on Hot Gas Ingestion Into the Upstream Cavity of a 1.5-Stage Turbine
,”
ASME
Paper No. GT2006-90453.
38.
Roy
,
R. P.
,
Feng
,
J.
,
Narzary
,
D.
,
Saurabh
,
P.
, and
Paolillo
,
R. E.
,
2004
, “
Experiments on Gas Ingestion Through Axial-Flow Turbine Rim Seals
,”
ASME
Paper No. GT2004-53394.
39.
Roy
,
R. P.
,
Zhou
,
D. W.
,
Ganesan
,
S.
,
Wang
,
C. Z.
,
Paolillo
,
R. E.
, and
Johnson
,
B. V.
,
2007
, “
The Flow Field and Main Gas Ingestion in a Rotor-Stator Cavity
,”
ASME
Paper No. GT2007-27671.
40.
Zhou
,
D. W.
,
Roy
,
R. P.
,
Wang
,
C. Z.
, and
Glahn
,
J. A.
,
2011
, “
Main Gas Ingestion in a Turbine Stage for Three Rim Cavity Configurations
,”
ASME J. Turbomach.
,
133
(
3
), p.
031023
.
41.
Balasubramanian
,
J.
,
Junnarkar
,
N.
,
Zhou
,
D. W.
,
Roy
,
R. P.
,
Kim
,
Y. W.
, and
Moon
,
H. K.
,
2011
, “
Experiments on Aft-Disk Cavity Ingestion in a Model 1.5-Stage Axial-Flow Turbine
,”
ASME
Paper No. GT2011-45895.
42.
Mirzamoghadam
,
A. V.
,
Kanjiyani
,
S.
,
Riahi
,
A.
,
Vishnumolakala
,
R.
, and
Gundeti
,
L.
,
2015
, “
Unsteady 360 Computational Fluid Dynamics Validation of a Turbine Stage Mainstream/Disk Cavity Interaction
,”
ASME J. Turbomach.
,
137
(
1
), p.
011008
.
43.
Cao
,
C.
,
Chew
,
J. W.
,
Millington
,
P. R.
, and
Hogg
,
S. I.
,
2004
, “
Interaction of Rim Seal and Annulus Flows in an Axial Flow Turbine
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
786
793
.
44.
Boudet
,
J.
,
Autef
,
V. N. D.
,
Chew
,
J. W.
,
Hills
,
N. J.
, and
Gentilhomme
,
O. P.
,
2005
, “
Numerical Simulation of Rim Seal Flows in Axial Turbines
,”
Aeronaut. J.
,
109
(1098), pp.
373
383
.
45.
O'Mahoney
,
T. S. D.
,
Hills
,
N. J.
,
Chew
,
J. W.
, and
Scanlon
,
T.
,
2011
, “
Large-Eddy Simulation of Rim Seal Ingestion
,”
Proc. Inst. Mech. Eng., Part C
,
225
(
12
), pp.
2881
2891
.
46.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part 3: Single and Double Seals
,”
ASME J. Turbomach.
,
135
(
5
), p.
051011
.
47.
Sangan
,
C. M.
,
Lalwani
,
Y.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2014
, “
Fluid Dynamics of a Gas Turbine Wheel-Space With Ingestion
,”
Proc. Inst. Mech. Eng., Part A
,
228
(
5
), pp.
508
524
.
48.
Owen
,
J. M.
,
Wu
,
K.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Cho
,
G.
, and
Lock
,
G. D.
,
2014
, “
Use of Pressure Measurements to Determine Effectiveness of Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
032510
.
49.
Cho
,
G.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2016
, “
Effect of Ingress on Turbine Discs
,”
ASME J. Eng. Gas Turbines Power
,
138
(4), p.
042502
.
50.
Mear
,
L. I.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2016
, “
Theoretical Model to Determine Effect of Ingress on Turbine Disks
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032502
.
51.
Wilson
,
M.
, and
Lock
,
G. D.
,
2015
, “
A Summary of Computations of Ingestion at the University of Bath
,” International Gas Turbine Congress (
IGTC 2015
), Tokyo, Japan, Nov. 11–15, Paper No. IGTC2015-0077.
52.
Khilnani
,
V. I.
, and
Bhavnani
,
S. H.
,
2001
, “
Sealing of Gas Turbine Disk Cavities Operating in the Presence of Mainstream External Flow
,”
Exp. Therm. Fluid Sci.
,
25
(
3–4
), pp.
163
173
.
53.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2014
, “
Experimental Measurements of Hot Gas Ingestion Through Turbine Rim Seals at Off-Design Conditions
,”
Proc. Inst. Mech. Eng., Part A
,
228
(
5
), pp.
491
507
.
You do not currently have access to this content.