Multicycle large-eddy simulations (LES) of motored flow in an optical engine housed at the University of Michigan have been performed. The simulated flow field is compared against particle image velocimetry (PIV) data in several cutting planes. Circular statistical methods have been used to isolate the contributions to overall turbulent fluctuations from changes in flow direction or magnitude. High levels of turbulence, as indicated by high velocity root mean square (RMS) values, exist in relatively large regions of the combustion chamber. But the circular standard deviation (CSD), a measure of the variability in flow direction independent of velocity magnitude, is much more limited to specific regions or points, indicating that much of the turbulence is from variable flow magnitude rather than variable flow direction. Using the CSD is also a promising method to identify critical points, such as vortex centers or stagnation points, within the flow, which may prove useful for future engine designers.

References

1.
Zhao
,
F.
,
Lai
,
M.-C.
, and
Harrington
,
D. L.
,
1999
, “
Automotive Spark-Ignited Direct-Injection Gasoline Engines
,”
Prog. Energy Combust. Sci.
,
25
(
5
), pp.
437
562
.
2.
Ozdor
,
N.
,
Dulger
,
M.
, and
Sher
,
E.
,
1994
, “
Cyclic Variability in Spark Ignition Engines a Literature Survey
,”
SAE
Technical Paper No. 940987.
3.
Aleiferis
,
P. G.
,
Taylor
,
A. M. K. P.
,
Whitelaw
,
J. H.
,
Ishii
,
K.
, and
Urata
,
Y.
,
2000
, “
Cyclic Variations of Initial Flame Kernel Growth in a Honda VTEC-E Lean-Burn Spark-Ignition Engine
,”
SAE
Technical Paper No. 2000-01-1207.
4.
Granet
,
V.
,
Vermorel
,
O.
,
Lacour
,
C.
,
Enaux
,
B.
,
Dugué
,
V.
, and
Poinsot
,
T.
,
2012
, “
Large-Eddy Simulation and Experimental Study of Cycle-to-Cycle Variations of Stable and Unstable Operating Points in a Spark Ignition Engine
,”
Combust. Flame
,
159
(
4
), pp.
1562
1575
.
5.
Chen
,
H.
,
Reuss
,
D. L.
,
Hung
,
D. L.
, and
Sick
,
V.
,
2012
, “
A Practical Guide for Using Proper Orthogonal Decomposition in Engine Research
,”
Int. J. Engine Res.
,
14
(
4
), pp.
307
319
.
6.
Sick
,
V.
,
Reuss
,
D.
,
Abraham
,
P.
,
Alharbi
,
A.
,
Almagri
,
O.
,
Chen
,
H.
,
Rutland
,
C.
,
Zhang
,
Y.
,
Haworth
,
D.
,
Liu
,
K.
,
Oefelein
,
J.
,
Janicka
,
J.
,
Goryntsev
,
D.
,
Kuo
,
T.-W.
,
Yang
,
X.
, and
Gopalakrishnan
,
V.
,
2010
, “
A Common Engine Platform for Engine LES Development and Validation
,”
Les Rencontres Scientifiques d'IFP Energies nouvelles: International Conference on LES for Internal Combustion Engine Flows (LES4ICE-2010)
, Rueil-Malmaison, France, Nov. 18–19,
C.
Angelberger
, ed.,
IFP Energies Nouvelle
,
Rueil-Malmaison, France
.
7.
Sick
,
V.
,
Reuss
,
D. L.
,
Rutland
,
C. J.
,
Haworth
,
D. C.
,
Oefelein
,
J. C.
,
Janicka
,
J.
,
Kuo
,
T.
,
Yang
,
X.
, and
Freitag
,
M.
,
2012
, “
A Common Engine Platform for Engine LES Development and Validation
,”
International Conference on LES for Internal Combustion Engine Flows
(
LES4ICE 2012
),
Rueil-Malmaison, France
, Nov. 29–30.
8.
Kuo
,
T.
,
Yang
,
X.
,
Gopalakrishnan
,
V.
, and
Chen
,
Z.
,
2013
, “
Large Eddy Simulation (LES) for IC Engine Flows
,”
Oil Gas Sci. Technol.
,
69
(
1
), pp.
61
81
.
9.
Abraham
,
P.
,
Reuss
,
D.
, and
Sick
,
V.
,
2013
, “
High-Speed Particle Image Velocimetry Study of In-Cylinder Flows With Improved Dynamic Range
,”
SAE
Technical Paper No. 2013-01-0542.
10.
Haworth
,
D. C.
,
Anand
,
A.
,
Kuo
,
T.-W.
,
Reuss
,
D. L.
,
Rutland
,
C. J.
,
Sick
,
V.
,
Schiffmann
,
P.
,
Shekhawat
,
Y.
,
Van Dam
,
N.
, and
Yang
,
X.
,
2015
, “
Cycle-to-Cycle Variations in a Homogeneous-Charge Spark-Ignition Engine: An Integrated Experimental and Simulation Investigation
,”
9th U.S. National Combustion Meeting
,
Cincinnati, OH
, May 17–20.
11.
Amsden
,
A. A.
,
1999
, “
KIVA-3V, Release 2, Improvements to KIVA-3V
,”
Los Alamos National Laboratory
, Los Alamos, NM, Technical Report No. LA-13608-MS.
12.
Pomraning
,
E.
, and
Rutland
,
C. J.
,
2002
, “
Dynamic One-Equation Nonviscosity Large-Eddy Simulation Model
,”
AIAA J.
,
40
(
4
), pp.
689
701
.
13.
Pope
,
S. B.
,
2004
, “
Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows
,”
New J. Phys.
,
6
, p.
35
.
14.
Mardia
,
K. V.
, and
Jupp
,
P. E.
,
2000
,
Directional Statistics
,
Wiley
,
Chichester, UK
.
You do not currently have access to this content.