It has been previously demonstrated that Reynolds-averaged Navier–Stokes (RANS) simulations do not accurately capture the mixing between the coolant flow and the main flow in trailing edge slot film cooling configurations. Most RANS simulations use a fixed turbulent Schmidt number of either 0.7 or 0.85 to determine the turbulent scalar flux, based on the values for canonical flows. This paper explores the extent to which RANS predictions can be improved by modifying the value of the turbulent Schmidt number. Experimental mean 3D velocity and coolant concentration data obtained using magnetic resonance imaging techniques are used to evaluate the accuracy of RANS simulations. A range of turbulent Schmidt numbers from 0.05 to 1.05 is evaluated and the optimal turbulent Schmidt number for each case is determined using an integral error metric which accounts for the difference between RANS and experiment throughout a three-dimensional region of interest (ROI). The resulting concentration distribution is compared in detail with the experimentally measured coolant concentration distribution to reveal where the fixed turbulent Schmidt number assumption fails. It is shown that the commonly used turbulent Schmidt number of 0.85 overpredicts the surface effectiveness in all cases, particularly when the k-omega shear stress transport (SST) model is employed, and that a lower value of the turbulent Schmidt number can improve predictions.

References

1.
Schneider
,
H.
,
Bauer
,
H.
,
von Terzi
,
D.
, and
Rodi
,
W.
,
2012
, “
Coherent Structures in Trailing-Edge Cooling and the Challenge for Turbulent Heat Transfer Modelling
,”
ASME
Paper No. GT2012-69771.10.1115/GT2012-69771
2.
Martini
,
P.
, and
Schulz
,
A.
,
2004
, “
Experimental and Numerical Investigation of Trailing Edge Film Cooling by Circular Coolant Wall Jets Ejected From a Slot With Internal Rib Arrays
,”
ASME J. Turbomach.
,
126
(
2
), pp.
229
236
.10.1115/1.1645531
3.
Martini
,
P.
,
Schulz
,
A.
,
Bauer
,
H.-J.
, and
Whitney
,
C.
,
2006
, “
Detached Eddy Simulation of Film Cooling Performance on the Trailing Edge Cutback of Gas Turbine Airfoils
,”
ASME J. Turbomach.
,
128
(
2
), pp.
292
299
.10.1115/1.2137739
4.
Holloway
,
D.
,
Leylek
,
J.
, and
Buck
,
F.
,
2002
, “
Pressure-Side Bleed Film Cooling: Part 1—Steady Framework for Experimental and Computational Results
,”
ASME
Paper No. GT2002-30471.10.1115/GT2002-30471
5.
Medic
,
G.
, and
Durbin
,
P.
,
2005
, “
Unsteady Effects on Trailing Edge Cooling
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
388
392
.10.1115/1.1860565
6.
Ravelli
,
S.
, and
Barigozzi
,
G.
,
2013
, “
Evaluation of RANS Predictions on a Linear Nozzle Vane Cascade With Trailing Edge Cutback Film Cooling
,”
ASME
Paper No. GT2013-94694.10.1115/GT2013-94694
7.
Schneider
,
H.
,
von Terzi
,
D.
, and
Bauer
,
H.-J.
,
2010
, “
Large-Eddy Simulations of Trailing-Edge Cutback Film Cooling at Low Blowing Ratio
,”
Int. J. Heat Fluid Flow
,
31
(
5
), pp.
767
775
.10.1016/j.ijheatfluidflow.2010.06.010
8.
Tyagi
,
M.
, and
Acharya
,
S.
,
2003
, “
Large Eddy Simulation of Film Cooling Flow From an Inclined Cylindrical Jet
,”
ASME J. Turbomach.
,
125
(
4
), pp.
734
742
.10.1115/1.1625397
9.
Martini
,
P.
,
Schulz
,
A.
,
Whitney
,
C.
, and
Lutum
,
E.
,
2003
, “
Experimental and Numerical Investigation of Trailing Edge Film Cooling Downstream of a Slot With Internal Rib Arrays
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
217
(
4
), pp.
393
401
.10.1243/095765003322315450
10.
Liu
,
C.
,
Zhu
,
H.
, and
Bai
,
J.
,
2008
, “
Effect of Turbulent Prandtl Number on the Computation of Film Cooling Effectiveness
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
6208
6218
.10.1016/j.ijheatmasstransfer.2008.04.039
11.
Rossi
,
R.
,
Philips
,
D.
, and
Iaccarino
,
G.
,
2010
, “
A Numerical Study of Scalar Dispersion Downstream of a Wall-Mounted Cube Using Direct Simulations and Algebraic Flux Models
,”
Int. J. Heat Fluid Flow
,
31
(
5
), pp.
805
819
.10.1016/j.ijheatfluidflow.2010.05.006
12.
Xueying
,
L.
,
Yanmin
,
Q.
,
Jing
,
R.
, and
Hongde
,
J.
,
2013
, “
Algebraic Anisotropic Turbulence Modeling of Compound Angled Film Cooling Validated by PIV and PSP Measurements
,”
ASME
Paper No. GT2013-94662.10.1115/GT2013-94662
13.
Ling
,
J.
,
Yapa
,
S.
,
Benson
,
M.
,
Elkins
,
C.
, and
Eaton
,
J.
,
2013
, “
3D Velocity and Scalar Field Measurements of an Airfoil Trailing Edge With Slot Film Cooling: The Effect of an Internal Structure in the Slot
,”
ASME J. Turbomach.
,
135
(
3
), p.
031018
.10.1115/1.4007520
14.
Elkins
,
C.
,
Markl
,
M.
,
Pelc
,
N.
, and
Eaton
,
J.
,
2003
, “
4D Magnetic Resonance Velocimetry for Mean Velocity Measurements in Complex Turbulent Flows
,”
Exp. Fluids
,
34
(
4
), pp.
494
503
.10.1007/s00348-003-0587-z
15.
Benson
,
M.
,
Elkins
,
C.
, and
Eaton
,
J.
,
2011
, “
3D Velocity and Scalar Field Diagnostics Using Magnetic Resonance Imaging With Applications in Film-Cooling
,” Stanford University, Stanford, CA, Turbulent Flow Report No. 123.
16.
Benson
,
M.
,
Elkins
,
C.
, and
Eaton
,
J.
,
2011
, “
Measurements of 3D Velocity and Scalar Field for a Film-Cooled Airfoil Trailing Edge
,”
Exp Fluids
,
51
(
2
), pp.
443
455
.10.1007/s00348-011-1062-x
17.
Papamoschou
,
D.
, and
Roshko
,
A.
,
1988
, “
The Compressible Turbulent Shear Layer: An Experimental Study
,”
J. Fluid Mech.
,
197
, pp.
453
477
.10.1017/S0022112088003325
18.
Maqbool
,
D.
, and
Cadou
,
C.
,
2011
, Master’s thesis, University of Maryland, College Park, MD.
19.
Barigozzi
,
G.
,
Armellini
,
A.
,
Mucignat
,
C.
, and
Casarsa
,
L.
,
2012
, “
Experimental Investigation of the Effects of Blowing Conditions and Mach Number on the Unsteady Behavior of Coolant Ejection Through a Trailing Edge Cutback
,”
Int. J. Heat Fluid Flow
,
37
, pp.
37
50
.10.1016/j.ijheatfluidflow.2012.07.001
20.
Pelc
,
N.
,
Sommer
,
F.
,
Li
,
K.
,
Brosnan
,
T.
,
Herfkens
,
R.
, and
Enzmann
,
D.
,
1994
, “
Quantitative Magnetic Resonance Flow Imaging
,”
Magn. Reson. Q.
,
10
(
3
), pp.
125
147
.
21.
Elkins
,
C.
,
Markl
,
M.
,
Iyengar
,
A.
,
Wicker
,
R.
, and
Eaton
,
J.
,
2004
, “
Full-Field Velocity and Temperature Measurements Using Magnetic Resonance Imaging in Turbulent Complex Internal Flows
,”
Int. J. Heat Fluid Flow
,
25
(
5
), pp.
702
710
.10.1016/j.ijheatfluidflow.2004.05.017
22.
Martini
,
P.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2006
, “
Film Cooling Effectiveness and Heat Transfer on the Trailing Edge Cutback of Gas Turbine Airfoils With Various Internal Cooling Designs
,”
ASME J. Turbomach.
,
128
(
1
), pp.
196
205
.10.1115/1.2103094
23.
Harrison
,
K.
, and
Bogard
,
D.
,
2008
, “
Comparison of RANS Turbulence Models for Prediction of Film Cooling Performance
,”
ASME
Paper No. GT2008-51423.10.1115/GT2008-51423
24.
Bradley
,
A.
,
Najafabadi
,
H.
,
Karlsson
,
M.
, and
Wren
,
J.
,
2011
, “
Towards Efficient CFD-Simulations of Engine Like Turbine Guide Vane Film Cooling
,”
AIAA
Paper No. 2011-708.10.2514/6.2011-708
25.
Ling
,
J.
,
Coletti
,
F.
,
Yapa
,
S.
, and
Eaton
,
J.
,
2013
, “
Experimentally Informed Optimization of Turbulent Diffusivity for a Discrete Hole Film Cooling Geometry
,”
Int. J. Heat Fluid Flow
,
44
, pp.
348
357
.10.1016/j.ijheatfluidflow.2013.07.005
You do not currently have access to this content.