Since lean premixed combustion allows for fuel-efficiency and low emissions, it is nowadays state of the art in stationary gas turbines. In the long term, it is also a promising approach for aero engines, when safety issues like lean blowout (LBO) and flame flashback in the premixer can be overcome. While for the use of hydrogen the LBO limits are extended, the flashback propensity is increased. Thus, axial air injection is applied in order to eliminate flashback in a swirl-stabilized combustor burning premixed hydrogen. Axial injection constitutes a nonswirling jet on the central axis of the radial swirl generator which influences the vortex breakdown (VB) position. In the present work, changes in the flow field and their impact on flashback limits of a model combustor are evaluated. First, a parametric study is conducted under isothermal test conditions in a water tunnel employing particle image velocimetry (PIV). The varied parameters are the amount of axially injected air and swirl number. Subsequently, flashback safety is evaluated in the presence of axial air injection in an atmospheric combustor test rig and a stability map is recorded. The flame structure is measured using high-speed OH* chemiluminescence imaging. Simultaneous high-speed PIV measurements of the reacting flow provide insight in the time-resolved reacting flow field and indicate the flame location by evaluating the Mie scattering of the raw PIV images by means of the qualitative light sheet (QLS) technique. The isothermal tests identify the potential of axial air injection to overcome the axial velocity deficits at the nozzle outlet, which is considered crucial in order to provide flashback safety. This effect of axial air injection is shown to prevail in the presence of a flame. Generally, flashback safety is shown to benefit from an elevated amount of axial air injection and a lower swirl number. Note that the latter also leads to increased NOx emissions, while axial air injection does not. Additionally, fuel momentum is indicated to positively influence flashback resistance, although based on a different mechanism, an explanation of which is suggested. In summary, flashback-proof operation of the burner with a high amount of axial air injection is achieved on the whole operating range of the test rig at inlet temperatures of 620 K and up to stoichiometric conditions while maintaining single digit NOx emissions below a flame temperature of 2000 K.

References

1.
Brand
,
J.
,
Sampath
,
S.
, and
Shum
,
F.
,
2003
, “
Potential Use of Hydrogen in Air Propulsion
,”
AIAA
Paper No. 2003–2879.10.2514/6.2003-2879
2.
Corchero
,
G.
, and
Montañés
,
J. L.
,
2005
, “
An Approach to the Use of Hydrogen for Commercial Aircraft Engines
,”
Proc. Inst. Mech. Eng., Part G.
,
219
(
1
), pp.
35
44
.10.1243/095441005X9139
3.
Haglind
,
F.
, and
Singh
,
R.
,
2006
, “
Design of Aero Gas Turbines Using Hydrogen
,”
ASME J. Eng. Gas Turbines Power
,
128
(
4
), pp.
754
764
.10.1115/1.2179468
4.
Yin
,
F.
,
Rao
,
A. G.
, and
van Buijtenen
,
J.
,
2013
, “
Performance Cycle Analysis for a Multi-Fuel Hybrid Engine
,”
ASME
Paper No. GT2013-94601.10.1115/GT2013-94601
5.
Levy
,
Y.
,
Sherbaum
,
V.
, and
Arfi
,
P.
,
2004
, “
Basic Thermodynamics of FLOXCOM, the Low-NOx Gas Turbines Adiabatic Combustor
,”
Appl. Therm. Eng.
,
24
(
11
), pp.
1593
1605
.10.1016/j.applthermaleng.2003.11.022
6.
Boerner
,
S.
,
Funke
,
H. H.-W.
,
Hendrick
,
P.
,
Recker
,
E.
, and
Elsing
,
R.
,
2011
, “
Development and Integration of a Scalable Low NOx Combustion Chamber for a Hydrogen-Fueled Aerogas Turbine
,”
Prog. Propuls. Phys.
,
4
, pp.
357
372
.10.1051/eucass/201304357
7.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
, 3rd ed.,
Taylor & Francis
,
Boca Raton, FL
.
8.
Ziemann
,
J.
,
1998
, “
Low-NOx Combustors for Hydrogen Fueled Aero Engine
,”
Int. J. Hydrogen Energy
,
23
(
4
), pp.
281
288
.10.1016/S0360-3199(97)00054-2
9.
Beerer
,
D.
,
McDonnell
,
V.
,
Therkelsen
,
P. L.
, and
Cheng
,
R. K.
,
2012
, “
Flashback, Blow Out, Emissions and Turbulent Displacement Flame Speed Measurements in a Hydrogen and Methane Fired Low-Swirl Injector at Elevated Temperatures and Pressures
,”
ASME
Paper No. GT2012-68216.10.1115/GT2012-68216
10.
Döbbeling
,
K.
, and
Hellat
,
J.
,
2007
, “
25 Years of BBC/ABB/Alstom Lean Premix Combustion Technologies
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
2
12
.10.1115/1.2181183
11.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
,
1984
,
Swirl Flows
,
Abacus
,
Tunbridge Wells and Kent, UK
.
12.
Burmberger
,
S.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2006
, “
Designing a Radial Swirler Vortex Breakdown Burner
,”
ASME
Paper No. GT2006-90497.10.1115/GT2006-90497
13.
Burmberger
,
S.
, and
Sattelmayer
,
T.
,
2011
, “
Optimization of the Aerodynamic Flame Stabilization for Fuel Flexible Gas Turbine Premix Burners
,”
ASME J. Eng. Gas Turbines Power
,
133
(
10
), p.
101501
.10.1115/1.4003164
14.
Burmberger
,
S.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
, “
Design Rules for the Velocity Field of Vortex Breakdown Swirl Burners
,”
ASME
Paper No. GT2006-90495.10.1115/GT2006-90495
15.
Jochmann
,
P.
,
Sinigersky
,
A.
,
Koch
,
R.
, and
Bauer
,
H.-J.
, “
URANS Prediction of Flow Instabilities of a Novel Atomizer Combustor Configuration
,”
ASME
Paper No. GT2006-90495.10.1115/GT2006-90495
16.
Spencer
,
A.
,
McGuirk
,
J. J.
, and
Midgley
,
K.
,
2008
, “
Vortex Breakdown in Swirling Fuel Injector Flows
,”
ASME J. Eng. Gas Turbines Power
,
130
(
2
), p.
021503
.10.1115/1.2799530
17.
Midgley
,
K.
,
Spencer
,
A.
, and
McGuirk
,
J. J.
,
2005
, “
Unsteady Flow Structures in Radial Swirler Fed Fuel Injectors
,”
ASME J. Eng. Gas Turbines Power
,
127
(
4
), pp.
755
764
.10.1115/1.1925638
18.
Terhaar
,
S.
,
Reichel
,
T. G.
,
Schrödinger
,
C.
,
Rukes
,
L.
,
Paschereit
,
C. O.
, and
Oberleitner
,
K.
,
2013
, “
Vortex Breakdown and Global Modes in Swirling Combustor Flows With Axial Air Injection
,”
AIAA
Paper No. 0748-4658.10.2514/1.B35217
19.
Galley
,
D.
,
Ducruix
,
S.
,
Lacas
,
F.
, and
Veynante
,
D.
,
2011
, “
Mixing and Stabilization Study of a Partially Premixed Swirling Flame Using Laser Induced Fluorescence
,”
Combust. Flame
,
158
(
1
), pp.
155
171
.10.1016/j.combustflame.2010.08.004
20.
Reichel
,
T. G.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2013
, “
Flow Field Manipulation by Axial Air Injection to Achieve Flashback Resistance and Its Impact on Mixing Quality
,”
AIAA
Paper No. 2013-2603.10.2514/6.2013-2603
21.
Billant
,
P.
,
Chomaz
,
J.-M.
, and
Huerre
,
P.
,
1998
, “
Experimental Study of Vortex Breakdown in Swirling Jets
,”
J. Fluid Mech.
,
376
, pp.
183
219
.10.1017/S0022112098002870
22.
Mayer
,
C.
,
Sangl
,
J.
,
Sattelmayer
,
T.
,
Lachaux
,
T.
, and
Bernero
,
S.
,
2012
, “
Study on the Operational Window of a Swirl Stabilized Syngas Burner Under Atmospheric and High Pressure Conditions
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
031506
.10.1115/1.4004255
23.
Sangl
,
J.
,
Mayer
,
C.
, and
Sattelmayer
,
T.
, “
Dynamic Adaptation of Aerodynamic Flame Stabilization of a Premix Swirl Burner to Fuel Reactivity Using Fuel Momentum
,”
ASME
Paper No. GT2010-22340.10.1115/GT2010-22340
24.
Lieuwen
,
T.
,
McDonell
,
V.
,
Petersen
,
E.
, and
Santavicca
,
D.
,
2008
, “
Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition, and Stability
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011506
.10.1115/1.2771243
25.
Kröner
,
M.
,
Fritz
,
J.
, and
Sattelmayer
,
T.
,
2003
, “
Flashback Limits for Combustion Induced Vortex Breakdown in a Swirl Burner
,”
ASME J. Eng. Gas Turbines Power
,
125
(
3
), pp.
693
700
.10.1115/1.1582498
26.
Beerer
,
D. J.
, and
McDonell
, V
. G.
,
2008
, “
Autoignition of Hydrogen and Air Inside a Continuous Flow Reactor With Application to Lean Premixed Combustion
,”
ASME J. Eng. Gas Turbines Power
,
130
(
5
), p.
051507
.10.1115/1.2939007
27.
Lacarelle
,
A.
, and
Paschereit
,
C. O.
,
2012
, “
Increasing the Passive Scalar Mixing Quality of Jets in Crossflow With Fluidics Actuators
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
021503
.10.1115/1.4004373
28.
Roehle
,
I.
,
Schodl
,
R.
,
Voigt
,
P.
, and
Willert
,
C.
,
2000
, “
Recent Developments and Applications of Quantitative Laser Light Sheet Measuring Techniques in Turbomachinery Components
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
1023
1035
.10.1088/0957-0233/11/7/317
29.
Terhaar
,
S.
, and
Paschereit
,
C.
,
2012
, “
High-Speed PIV Investigation of Coherent Structures in a Swirl-Stabilized Combustor Operating at Dry and Steam-Diluted Conditions
,”
16th International Symposium on Applications of Laser Techniques to Fluid Mechanics
, Lisbon, Portugal, July 9–12, pp.
37
48
.
You do not currently have access to this content.