Robust control techniques have allowed engineers to create more descriptive models by including uncertainty in the form of additive noise and plant perturbations. As a result, the complete model set is robust to any discrepancies between the mathematical model and actual system. Experimental unfalsification of the model set leads to the guarantee that the model and uncertainties are able to recreate all experimental data points. In this work, such a robust control relevant model validation technique is applied to structural health monitoring in order to (1) detect the presence of damage and (2) identify the damage dynamics when used in conjunction with model-based identification. Additionally, the robust control relevant model validation technique allows for a novel quality measure of the identified damage dynamics. Feasibility of the method is demonstrated experimentally on a rotordynamic crack detection test rig with the detection and identification of a change in structure. Further insight is gained from application of the method to seeded damage on a rotor levitated on active magnetic bearings (AMBs) in the form of a local reduction in stiffness.

References

1.
Smith
,
R. S.
,
1990
, “
Model Validation for Uncertain Systems
,” Doctoral dissertation, California Institute of Technology, Pasadena, CA.
2.
Oomen
,
T.
, and
Bosgra
,
O.
,
2008
, “
Estimating Disturbances and Model Uncertainty in Model Validation for Robust Control
,”
47th IEEE Conference on Decision and Control
(
CDC 2008
), Cancun, Mexico, Dec. 9–11, pp.
5513
5518
.10.1109/CDC.2008.4738592
3.
Oomen
,
T.
, and
Bosgra
,
O.
,
2009
, “
Well-Posed Model Uncertainty Estimation by Design of Validation Experiments
,”
15th IFAC Symposium on System Identification
, Saint-Malo, France, July 6–8, pp.
1199
1204
.10.3182/20090706-3-FR-2004.00199
4.
Maslen
,
E. H.
,
Vasquez
,
J. A.
, and
Sortore
,
C. K.
,
2002
, “
Reconciliation of Rotordynamic Models With Experimental Data
,”
ASME J. Gas Turbines Power
,
124
(
2
), pp.
351
356
.10.1115/1.1416692
5.
Wang
,
Q.
,
Pettinato
,
B.
, and
Maslen
,
E.
,
2009
, “
Identification in Rotordynamics: Uncertainty Analysis and Quality Estimation
,”
ASME
Paper No. GT2009-59103.10.1115/GT2009-59103
6.
Wang
,
Q.
,
Pettinato
,
B.
, and
Maslen
,
E.
,
2009
, “
Identification in Rotordynamics: Model-Based vs. Direct Measurements
,”
ASME
Paper No. GT2009-59102.10.1115/GT2009-59102
7.
Sawicki
,
J. T.
, and
Madden
,
R.
,
2011
, “
Identification of Missing Dynamics in Rotor Systems Using Robust Control Theory Approach
,”
Vibration Problems ICOVP 2011
(Springer Proceedings in Physics, Vol. 139),
Springer
,
Dordrecht, The Netherlands
, pp.
581
586
.
8.
Madden
,
R. J.
, and
Sawicki
,
J. T.
,
2012
, “
Rotor Model Validation for an Active Magnetic Bearing Machining Spindle Using Mu-Synthesis Approach
,”
ASME J. Gas Turbines Power
,
134
(
9
), p.
092501
.10.1115/1.4006988
9.
Skogestad
,
S.
, and
Postlethwaite
,
I.
,
2005
,
Multivariable Feedback Control: Analysis and Design
,
Wiley
,
Chichester, UK
.
10.
Sawicki
,
J. T.
,
Friswell
,
M. I.
,
Kulesza
,
Z.
,
Wroblewski
,
A.
, and
Lekki
,
J. D.
,
2011
, “
Detecting Cracked Rotors Using Auxiliary Harmonic Excitation
,”
J. Sound Vib.
,
330
(
7
), pp.
1365
1381
.10.1016/j.jsv.2010.10.006
11.
Sawicki
,
J. T.
,
Sen
,
A. K.
, and
Litak
,
G.
,
2009
, “
Multiresolution Wavelet Analysis of the Dynamics of a Cracked Rotor
,”
Int. J. Rotating Mach.
,
2009
(1), p.
265198
.10.1155/2009/265198
12.
Wroblewski
,
A. C.
,
Pesch
,
A. H.
, and
Sawicki
,
J. T.
,
2014
, “
Structural Change Quantification in Rotor Systems Based on Measured Resonance and Antiresonance Frequencies
,”
ASME J. Gas Turbines Power
,
136
(
2
), p.
022506
.10.1115/1.4025484
13.
Oomen
,
T.
,
van der Meulen
,
S.
,
Bosgra
,
O.
,
Steinbuch
,
M.
, and
Elfring
,
J.
,
2010
, “
A Robust-Control-Relevant Model Validation Approach for Continuously Variable Transmission Control
,”
American Control Conference
(
ACC
), Baltimore, MD, June 30–July 2, pp.
3518
3523
.10.1109/ACC.2010.5530978
14.
Oomen
,
T.
,
van Herpen
,
R.
,
Quist
,
S.
,
van de Wal
,
M.
,
Bosgra
,
O.
, and
Steinbuch
,
M.
,
2013
, “
Connecting System Identification and Robust Control for Next-Generation Motion Control of a Wafer Stage
,”
IEEE Trans. Control Syst. Technol.
,
22
(
1
), pp.
102
118
.10.1109/TCST.2013.2245668
15.
Ljung
,
L.
,
1995
,
MATLAB: System Identification Toolbox: User's Guide Version 4, The Mathworks, Natick, MA.
You do not currently have access to this content.