Knock is the main obstacle toward increasing the compression ratio and using lower octane number fuels. In this paper, a small two-valve aircraft spark ignition engine, Rotax-914, was used as an example to investigate different methods to suppress engine knock. It is generally known that if the octane number is increased and the combustion period is shortened, the occurrence of knock will be suppressed. Thus, in this paper, different methods were introduced for two effects, increasing ignition delay time in end-gas and increasing flame speed. In the context, KIVA-3V code, as an advanced 3D engine combustion simulation code, was used for engine simulations and chemical kinetics investigations were also conducted using chemkin. The results illustrated gas addition, such as hydrogen and natural gas addition, can be used to increase knock resistance of the Rotax-914 engine in some operating conditions. Replacing the traditional port injection method by direct injection strategy was another way investigated in this paper to suppress engine knock. Some traditional methods, such as adding exhaust gas recirculation (EGR) and increasing swirl ratio, also worked for this small spark ignition engine.

References

1.
Heywood
,
J. B.
,
1996
,
Internal Combustion Engine Fundamentals
, Vol.
930
,
McGraw-Hill
,
New York
.
2.
Shao
,
J.
, and
Rutland
,
C. J.
,
2014
, “
Modeling Investigation of Auto-Ignition and Engine Knock by HO2
,”
SAE
Technical Paper No. 2014-01-1221.10.4271/2014-01-1221
3.
Popuri
,
S. S.
, and
Bata
,
R. M.
,
1993
, “
A Performance Study of Iso-Butanol-, Methanol-, and Ethanol-Gasoline Blends Using a Single Cylinder Engine
,”
SAE
Technical Paper No. 932953.10.4271/932953
4.
Attar
,
A. A.
, and
Karim
,
G. A.
,
2003
, “
Knock Rating of Gaseous Fuels
,”
ASME J. Eng. Gas. Turbines Power
,
125
(
2
), pp.
500
504
.10.1115/1.1560707
5.
Topinka
,
J. A.
,
Gerty
,
M. D.
,
Heywood
,
J. B.
, and
Keck
,
J. C.
,
2004
, “
Knock Behavior of a Lean-Burn, H2 and CO Enhanced, SI Gasoline Engine Concept
,”
SAE
Technical Paper No. 2004-01-0975.10.4271/2004-01-0975
6.
Karim
,
G. A.
,
2003
, “
Combustion in Gas Fueled Compression: Ignition Engines of the Dual Fuel Type
,”
ASME J. Eng. Gas Turbines Power
,
125
(
3
), pp.
827
836
.10.1115/1.1581894
7.
Wang
,
Z.
,
Wang
,
J. X.
,
Shuai
,
S. J.
,
Tian
,
G. H.
, and
An
,
X. L.
,
2007
, “
Experimental and Computational Studies on Gasoline HCCI Combustion Control Using Injection Strategies
,”
ASME J. Eng. Gas Turbines Power
,
129
(
3
), pp.
870
876
.10.1115/1.2227030
8.
Tan
,
Z.
, and
Reitz
,
R. D.
,
2006
, “
An Ignition and Combustion Model Based on the Level-Set Method for Spark Ignition Engine Multidimensional Modeling
,”
Combust. Flame
,
145
(
1
), pp.
1
15
.10.1016/j.combustflame.2005.12.007
9.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG κ-ε Models
,”
Combust. Sci. Technol.
,
106
(
4–6
), pp.
267
295
.10.1080/00102209508907782
10.
Liang
,
L.
,
Reitz
,
R. D.
,
Iyer
,
C. O.
, and
Yi
,
J.
,
2007
, “
Modeling Knock in Spark-Ignition Engines Using a G-Equation Combustion Model Incorporating Detailed Chemical Kinetics
,”
SAE
Technical Paper No. 2007-01-0165.10.4271/2007-01-0165
11.
Mehl
,
M.
,
Pitz
,
W. J.
,
Westbrook
,
C. K.
, and
Curran
,
H. J.
,
2011
, “
Kinetic Modeling of Gasoline Surrogate Components and Mixtures Under Engine Conditions
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
193
200
.10.1016/j.proci.2010.05.027
12.
Ra
,
Y.
, and
Reitz
,
R. D.
,
2008
, “
A Reduced Chemical Kinetic Model for IC Engine Combustion Simulations With Primary Reference Fuels
,”
Combust. Flame
,
155
(
4
), pp.
713
738
.10.1016/j.combustflame.2008.05.002
13.
Tsuboi
,
T.
, and
Wagner
,
H. G.
,
1975
, “
Homogeneous Thermal Oxidation of Methane in Reflected Shock Waves
,”
Symp. (Int.) Combust.
,
15
(1), pp.
883
890
.10.1016/S0082-0784(75)80355-9
14.
Spadaccini
,
L. J.
, and
Colket
, III,
M. B.
,
1994
, “
Ignition Delay Characteristics of Methane Fuels
,”
Prog. Energy Combust. Sci.
,
20
(
5
), pp.
431
460
.10.1016/0360-1285(94)90011-6
15.
Hidaka
,
Y.
,
Sato
,
K.
,
Hoshikawa
,
H.
,
Nishimori
,
T.
,
Takahashi
,
R.
,
Tanaka
,
H.
,
Inami
,
K.
, and
Ito
,
N.
,
2000
, “
Shock-Tube and Modeling Study of Ethane Pyrolysis and Oxidation
,”
Combust. Flame
,
120
(
3
), pp.
245
264
.10.1016/S0010-2180(99)00102-9
16.
He
,
X.
,
Donovan
,
M. T.
,
Zigler
,
B. T.
,
Palmer
,
T. R.
,
Walton
,
S. M.
,
Wooldridge
,
M. S.
, and
Atreya
,
A.
,
2005
, “
An Experimental and Modeling Study of Iso-Octane Ignition Delay Times Under Homogeneous Charge Compression Ignition Conditions
,”
Combust. Flame
,
142
(
3
), pp.
266
275
.10.1016/j.combustflame.2005.02.014
17.
Ciezki
,
H. K.
, and
Adomeit
,
G.
,
1993
, “
Shock-Tube Investigation of Self-Ignition of n-Heptane-Air Mixtures Under Engine Relevant Conditions
,”
Combust. Flame
,
93
(
4
), pp.
421
433
.10.1016/0010-2180(93)90142-P
18.
Hughes
,
K. J.
,
Turanyi
,
T.
,
Clague
,
A. R.
, and
Pilling
,
M. J.
,
2001
, “
Development and Testing of a Comprehensive Chemical Mechanism for the Oxidation of Methane
,”
Int. J. Chem. Kinet.
,
33
(
9
), pp.
513
538
.10.1002/kin.1048
19.
Jomaas
,
G.
,
Zheng
,
X. L.
,
Zhu
,
D. L.
, and
Law
,
C. K.
,
2005
, “
Experimental Determination of Counterflow Ignition Temperatures and Laminar Flame Speeds of C2-C3 Hydrocarbons at Atmospheric and Elevated Pressures
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
193
200
.10.1016/j.proci.2004.08.228
20.
Huang
,
Y.
,
Sung
,
C. J.
, and
Eng
,
J. A.
,
2004
, “
Laminar Flame Speeds of Primary Reference Fuels and Reformer Gas Mixtures
,”
Combust. Flame
,
139
(
3
), pp.
239
251
.10.1016/j.combustflame.2004.08.011
21.
Fan
,
L.
,
Li
,
G.
,
Han
,
Z.
, and
Reitz
,
R. D.
,
1999
, “
Modeling Fuel Preparation and Stratified Combustion in a Gasoline Direct Injection Engine
,”
SAE
Technical Paper No. 1999-01-0175.10.4271/1999-01-0175
22.
Tan
,
Z.
,
Fan
,
L.
, and
Reitz
,
R. D.
,
2001
, “
Modeling Ignition, Multicomponent Fuel Vaporization and Spray Breakup in a DISI Engine
,”
14th Annual Conference on Liquid Atomization and Spray Systems
(ILASS-01), Dearborn, MI, May 20–23.
23.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge University Press
, Cambridge, UK.
24.
Yu
,
G.
,
Law
,
C. L.
, and
Wu
,
C. L.
,
1986
, “
Laminar Flame Speeds of Hydrocarbon + Air Mixtures With Hydrogen Addition
,”
Combust. Flame
,
63
(
3
), pp.
339
347
.10.1016/0010-2180(86)90003-9
25.
Tang
,
C. L.
,
Huang
,
Z. H.
, and
Law
,
C. K.
,
2011
, “
Determination, Correlation, and Mechanistic Interpretation of Effects of Hydrogen Addition on Laminar Flame Speeds of Hydrocarbon + Air Mixtures
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
921
928
.10.1016/j.proci.2010.05.039
26.
Eng
,
J. A.
,
2002
, “
Characterization of Pressure Waves in HCCI Combustion
,”
SAE
Technical Paper No. 2002-01-2859.10.4271/2002-01-2859
27.
Dec
,
J. E.
, and
Yang
,
Y.
,
2010
, “
Boosted HCCI for High Power Without Engine Knock and With Ultra-Low NOx Emissions-Using Conventional Gasoline
,”
SAE
Technical Paper No. 2010-01-1086.10.4271/2010-01-1086
28.
Wu
,
Y.
,
Hanson
,
R.
, and
Reitz
,
R. D.
,
2014
, “
Investigation of Combustion Phasing Control Strategy During Reactivity Controlled Compression Ignition (RCCI) Multicylinder Engine Load Transitions
,”
ASME J. Eng. Gas Turbines Power
,
136
(
9
), p.
091511
.10.1115/1.4027190
29.
Kokjohn
,
S. L.
,
Hanson
,
R. M.
,
Splitter
,
D. A.
, and
Reitz
,
R. D.
,
2011
, “
Fuel Reactivity Controlled Compression Ignition (RCCI): A Pathway to Controlled High-Efficiency Clean Combustion
,”
Int. J. Eng. Res.
,
12
(
3
), pp.
209
226
.10.1177/1468087411401548
30.
Glassman
,
I.
,
1997
,
Combustion
,
Academic Press
, San Diego, CA.
31.
Fristrom
,
R. M.
, and
Westenberg
,
A. A.
,
1965
,
Flame Structure
,
McGraw-Hill
,
New York
.
32.
Loubar
,
K.
,
Rahmouni
,
C.
,
Le Corre
,
O.
, and
Tazerout
,
M.
,
2005
, “
Combustion Properties Determination of Natural Gas Using Thermal Conductivity and CO2 Content
,”
SAE
Technical Paper No. 2005-01-3774.10.4271/2005-01-3774
33.
Shao
,
J.
,
2014
, “
Numerical Investigation of Engine Knock
,” Master's thesis, University of Wisconsin–Madison, Madison, WI.
34.
Teraji
,
A.
,
Kakuho
,
A.
,
Tsuda
,
T.
, and
Hashizume
,
Y.
,
2009
, “
A Study of the Knocking Mechanism in Terms of Flame Propagation Behavior Based on 3D Numerical Simulations
,”
SAE Int. J. Eng.
,
2
(
1
), pp.
666
673
.10.4271/2009-01-0699
35.
Cairns
,
A.
, and
Blaxill
,
H.
,
2005
, “
The Effects of Combined Internal and External Exhaust Gas Recirculation on Gasoline Controlled Auto-Ignition
,”
SAE
Technical Paper No. 2015-01-0133.10.4271/2015-01-0133
36.
Hoepke
,
B.
,
Jannsen
,
S.
,
Kasseris
,
E.
, and
Cheng
,
W. K.
,
2012
, “
EGR Effects on Boosted SI Engine Operation and Knock Integral Correlation
,”
SAE Int. J. Eng.
,
5
(
2
), pp.
547
559
.
You do not currently have access to this content.