Modern gas turbine combustors operating in lean-premixed mode are prone to thermo-acoustic instabilities. In annular combustion chambers, usually azimuthal acoustic modes are the critical ones interacting with the flame. In case of constructive interference, high amplitude oscillations might result. In this paper, the azimuthal acoustic field of a full-scale engine is investigated in detail. The analyses are based on measurements in a full-scale gas turbine, analytical models to derive the system dynamics, as well as simulations performed with an in-house 3d nonlinear network model. It is shown that the network model is able to reproduce the behavior observed in the engine. Spectra, linear growth rates, as well as the statistics of the system's dynamics can be predicted. A previously introduced algorithm is used to extract linear growth rates from engine and model time domain data. The method's accuracy is confirmed by comparison of the routine's results to analytically determined growth rates from the network model. The network model is also used to derive a burner staging configuration, resulting in the decrease of linear growth rate and thus an increase of engine operation regime; model predictions are verified by full-scale engine measurements. A thorough investigation of the azimuthal modes statistics is performed. Additionally, the network model is used to show that an unfavorable flame temperature distribution with an amplitude of merely 1% of the mean flame temperature can change the azimuthal mode from dominantly rotating to dominantly standing. This is predicted by the network model that only takes into account flame fluctuations in axial direction.

References

1.
Bothien
,
M.
,
Noiray
,
N.
, and
Schuermans
,
B.
,
2013
, “
A Novel Damping Device for Broadband Attenuation of Low-Frequency Combustion Pulsations in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
136
(
4
), p.
041504
.10.1115/1.4025761
2.
Krebs
,
W.
,
Flohr
,
P.
,
Prade
,
B.
, and
Hoffmann
,
S.
,
2002
, “
Thermoacoustic Stability Chart for High Intensity Gas Turbine Combustion System
,”
Combust. Sci. Technol.
,
174
(
7
), pp.
99
128
.10.1080/00102200208984089
3.
Seume
,
J. R.
,
Vortmeyer
,
N.
,
Krause
,
W.
,
Hermann
,
J.
,
Hantschk
,
C.
,
Zangl
,
P.
,
Gleis
,
S.
,
Vortmeyer
,
D.
, and
Orthmann
,
A.
,
1998
, “
Application of Active Combustion Instability Control to a Heavy Duty Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
120
(
4
), pp.
721
726
.10.1115/1.2818459
4.
Noiray
,
N.
, and
Schuermans
,
B.
,
2013
, “
On the Dynamic Nature of Azimuthal Thermoacoustic Modes in Annular Gas Turbine Combustion Chambers
,”
Proc. R. Soc. A
,
469
(
2151
), p.
20120535
.10.1098/rspa.2012.0535
5.
Staffelbach
,
G.
,
Gicquel
,
L. Y. M.
,
Boudier
,
G.
, and
Poinsot
,
T.
,
2009
, “
Large Eddy Simulation of Self Excited Azimuthal Modes in Annular Combustors
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2909
2916
.10.1016/j.proci.2008.05.033
6.
Wolf
,
P.
,
Staffelbach
,
G.
,
Gicquel
,
L.
,
Müller
,
J.
, and
Poinsot
,
T.
,
2012
, “
Acoustic and Large Eddy Simulation Studies of Azimuthal Modes in Annular Combustion Chambers
,”
Combust. Flame
,
159
(
11
), pp.
3398
3413
.10.1016/j.combustflame.2012.06.016
7.
Evesque
,
S.
,
Polifke
,
W.
, and
Pankiewitz
,
C.
,
2003
, “
Spinning and Azimuthally Standing Acoustic Modes in Annular Combustors
,”
AIAA
Paper No. 2003-3182.10.2514/6.2003-3182
8.
Schuermans
,
B.
,
Paschereit
,
C. O.
, and
Monkewitz
,
P.
,
2006
, “
Non-Linear Combustion Instabilities in Annular Gas Turbine Combustors
,”
AIAA
Paper No. 2006-0549.10.2514/6.2006-549
9.
Morgans
,
A. S.
, and
Stow
,
S. R.
,
2007
, “
Model-Based Control of Combustion Instabilities in Annular Combustors
,”
Combust. Flame
,
150
(
4
), pp.
380
399
.10.1016/j.combustflame.2007.06.002
10.
Stow
,
S. R.
, and
Dowling
,
A. P.
,
2009
, “
A Time-Domain Network Model for Nonlinear Thermoacoustic Oscillations
,”
ASME J. Eng. Gas Turbines Power
,
131
(
3
), p.
031502
.10.1115/1.2981178
11.
Noiray
,
N.
,
Bothien
,
M.
, and
Schuermans
,
B.
,
2011
, “
Investigation of Azimuthal Staging Concepts in Annular Gas Turbine
,”
Combust. Theory Modell.
,
15
(
5
), pp.
585
606
.10.1080/13647830.2011.552636
12.
Ghirardo
,
G.
, and
Juniper
,
M. P.
,
2013
, “
Azimuthal Instabilities in Annular Combustors: Standing and Spinning Modes
,”
Proc. R. Soc. A
,
469
(
2157
), p.
20130232
.10.1098/rspa.2013.0232
13.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2013
, “
Modal Dynamics of Self-Excited Azimuthal Instabilities in an Annular Combustion Chamber
,”
Combust. Flame
,
160
(
11
), pp.
2476
2489
.10.1016/j.combustflame.2013.04.031
14.
Cohen
,
J.
,
Hagen
,
G.
,
Banaszuk
,
A.
,
Becz
,
S.
, and
Mehta
,
P.
,
2011
, “
Attenuation of Combustor Pressure Oscillations Using Symmetry Breaking
,”
AIAA
Paper No. GT2011-0060.10.2514/6.2011-0060
15.
Moeck
,
J. P.
,
Paul
,
M.
, and
Paschereit
,
C. O.
,
2010
, “
Thermoacoustic Instabilities in an Annular Rijke Tube
,”
ASME
Paper No. GT2010-23577.10.1115/GT2010-23577
16.
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Moeck
,
J. P.
,
Schuller
,
T.
, and
Candel
,
S.
,
2013
, “
Self-Sustained Instabilities in an Annular Combustor Coupled by Azimuthal and Longitudinal Acoustic Modes
,”
ASME
Paper No. GT2013-95010.10.1115/GT2013-95010
17.
Kunze
,
K.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2004
, “
Transfer Function Measurement on a Swirl Stabilized Premix Burner in an Annular Combustion Chamber
,”
ASME
Paper No. GT2004-53106.10.1115/GT2004-53106
18.
Kopitz
,
J.
,
Huber
,
A.
,
Sattelmayer
,
T.
, and
Polifke
,
W.
,
2005
, “
Thermoacoustic Stability Analysis of an Annular Combustion Chamber With Acoustic Low Order Modeling and Validation Against Experiment
,”
ASME
Paper No. GT2005-68797.10.1115/GT2005-68797
19.
Schuermans
,
B.
,
Bellucci
,
V.
, and
Paschereit
,
C. O.
,
2003
, “
Thermoacoustic Modeling and Control of Multi Burner Combustion Systems
,”
ASME
Paper No. GT2003-38688.10.1115/GT2003-38688
20.
Bellucci
,
V.
,
Schuermans
,
B.
,
Nowak
,
D.
,
Flohr
,
P.
, and
Paschereit
,
C. O.
,
2005
, “
Thermoacoustic Modeling of a Gas Turbine Combustor Equipped With Acoustic Dampers
,”
ASME J. Turbomach.
,
127
(
2
), pp.
372
379
.10.1115/1.1791284
21.
Paschereit
,
C. O.
, and
Polifke
,
W.
,
1998
, “
Investigation of the Thermoacoustic Characteristics of a Lean Premixed Gas Turbine Burner
,”
ASME
Paper No. 98-GT-582.
22.
Noiray
,
N.
, and
Schuermans
,
B.
,
2012
, “
Deterministic Quantities Characterizing Noise Driven Hopf Bifurcations in Gas Turbine Combustor
,”
Int. J. Non-linear Mech.
,
50
, pp.
152
163
.10.1016/j.ijnonlinmec.2012.11.008
23.
Bothien
,
M. R.
,
Moeck
,
J. P.
, and
Paschereit
,
C. O.
,
2010
, “
Comparison of Linear Stability Analysis With Experiments by Actively Tuning the Acoustic Boundary Conditions of a Premixed Combustor
,”
ASME J. Eng. Gas Turbines Power
,
135
(
12
), p.
121502
.10.1115/1.4000806
24.
Bothien
,
M. R.
,
2008
, “
Impedance Tuning: A Method for Active Control of the Acoustic Boundary Conditions of Combustion Test Rigs
,” Ph.D. thesis, Institut für Strömungsmechanik und Technische Akustik, Technische Universität Berlin, Berlin, Germany.
25.
Rowley
,
C. W.
,
Williams
,
D. R.
,
Colonius
,
T.
,
Murray
,
R. M.
, and
Macmynoski
,
D. G.
,
2006
, “
Linear Models for Control of Cavity Flow Oscillations
,”
J. Fluid Mech.
,
547
, pp.
317
330
.10.1017/S0022112005007299
26.
Lieuwen
,
T. C.
,
2002
, “
Experimental Investigation of Limit-Cycle Oscillations in an Unstable Gas Turbine Combustor
,”
J. Propul. Power
,
18
(
1
), pp.
61
67
.10.2514/2.5898
You do not currently have access to this content.