Large eddy simulations (LES) are performed of a bluff-body–stabilized flame with discrete liquid fuel injectors located just upstream of the bluff-body trailing edge in a so-called “close-coupled” configuration. Nonreacting and reacting simulations of the Georgia Tech single flameholder test rig [Cross et al., 2010, “Dynamics of Non-premixed Bluff Body-Stabilized Flames in Heated Air Flow,” Proceedings of ASME Turbo Expo, Paper No. GT2010-23059] are conducted using an Eulerian–Lagrangian approach with a finite volume solver. Experimental data is first used to characterize the boundary conditions under nonreacting conditions before simulating reacting test cases at two different fuel mass flow rates. The two fuel mass flow rates not only result in different global equivalence ratios but different spatial distributions of fuel, especially in the near-field wake of the bluff body. The differing spatial distribution of fuel results in two distinct flame dynamics; at the high-fuel flow rate, large-scale sinusoidal Bérnard/von-Kármán (BVK) oscillations are observed, whereas a symmetric flame is seen under the low-fuel flow rate condition.

References

1.
Lovett
,
J. A.
,
Brogan
,
T. P.
,
Philippona
,
D. S.
,
Keil
,
B. V.
, and
Thompson
,
T. V.
,
2004
, “
Development Needs for Advanced Afterburner Designs
,”
40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
, Fort Lauderdale, FL, July 11–14,
AIAA
Paper No. 2004-4192.10.2514/6.2004-4192
2.
Cross
,
C.
,
Fricker
,
A.
,
Shcherbik
,
D.
,
Lubarsky
,
E.
,
Zinn
,
B. T.
, and
Lovett
,
J. A.
,
2010
, “
Dynamics of Non-Premixed Bluff Body-Stabilized Flames in Heated Air Flow
,”
ASME
Paper No. GT2010-23059.10.1115/GT2010-23059
3.
Lovett
,
J. A.
,
Cross
,
C.
,
Lubarsky
,
E.
, and
Zinn
,
B. T.
,
2011
, “
A Review of Mechanisms Controlling Bluff-Body Stabilized Flames With Closely-Coupled Fuel Injection
,”
ASME
Paper No. GT2011-46676.10.1115/GT2011-46676
4.
Klusmeyer
,
A.
,
Cross
,
C.
,
Lubarsky
,
E.
,
Bibik
,
O.
,
Shcherbik
,
D.
, and
Zinn
,
B. T.
,
2013
, “
Prediction of Blow-Offs of Bluff Body Stabilized Flames Utilizing Close-Coupled Injection of Liquid Fuels
,”
ASME J. Eng. Gas Turbines Power
,
135
(1), p.
011504
.10.1115/1.4007371
5.
Lovett
,
J. A.
,
Ahmed
,
K. A.
,
Klusmeyer
,
A.
,
Smith
,
A. G.
,
Lubarsky
,
E.
,
Menon
,
S.
, and
Zinn
,
B. T.
,
2013
, “
On the Influence of Fuel Distribution on the Flame Structure of Bluff-Body Stabilized Flames
,”
ASME
Paper No. GT2013-95997.10.1115/GT2013-95997
6.
Génin
,
F.
, and
Menon
,
S.
,
2010
, “
Studies of Shock/Turbulent Shear Layer Interaction Using Large-Eddy Simulation
,”
Comput. Fluids
,
39
, pp.
800
819
.10.1016/j.compfluid.2009.12.008
7.
Kim
,
W.-W.
, and
Menon
,
S.
,
1999
, “
An Unsteady Incompressible Navier-Stokes Solver for Large Eddy Simulation of Turbulent Flows
,”
Int. J. Numer. Methods Fluids
,
31
, pp.
983
1017
.10.1002/(SICI)1097-0363(19991130)31:6<983::AID-FLD908>3.0.CO;2-Q
8.
Fureby
,
C.
, and
Möller
,
S.-I.
,
1995
, “
Large Eddy Simulation of Reacting Flows Applied to Bluff Body Stabilized Flames
,”
AIAA J.
,
33
(
12
), pp.
2339
2347
.10.2514/3.12989
9.
Goldin
,
G.
,
2005
, “
Evaluation of LES Subgrid Reaction Models in a Lifted Flame
,”
43rd AIAA Aerospace Sciences Meeting
, Reno, NV, January 10–13,
AIAA
Paper No. 2005-555.10.2514/6.2005-555
10.
Fureby
,
C.
,
2007
, “
Comparison of Flamelet and Finite Rate Chemistry LES for Premixed Turbulent Combustion
,”
45th AIAA Aerospace Sciences Meeting
, Reno, NV, January 8–11,
AIAA
Paper No. 2007-1413.10.2514/6.2007-1413
11.
Berglund
,
M.
,
Fedina
,
E.
,
Fureby
,
C.
,
Tegnér
,
J.
, and
Sabelnikov
,
V.
,
2010
, “
Finite Rate Chemistry Large-Eddy Simulation of Self-Ignition in a Supersonic Combustion Ramjet
,”
AIAA J.
,
48
(
3
), pp.
540
550
.10.2514/1.43746
12.
Strakey
,
P. A.
, and
Eggenspieler
,
G.
,
2010
, “
Development and Validation of a Thickened Flame Modeling Approach for Large Eddy Simulation of Premixed Combustion
,”
ASME J. Eng. Gas Turbines Power
,
132
(7), p.
071501
.10.1115/1.4000119
13.
Duwig
,
C.
,
Nogenmy
,
K.-J.
,
Chan
,
C.
, and
Dunn
,
M. J.
,
2011
, “
Large Eddy Simulations of a Piloted Lean Premix Jet Flame Using Finite-Rate Chemistry
,”
Combust. Theory Model.
,
15
(
4
), pp.
537
568
.10.1080/13647830.2010.548531
14.
Gokulakrishnan
,
P.
,
Bikkani
,
R.
,
Klassen
,
M. S.
,
Roby
,
R. J.
, and
Kiel
,
B.
,
2009
. “
Influence of Turbulence-Chemistry Interaction in Blow-Out Predictions of Bluff-Body Stabilized Flames
,”
47th AIAA Aerospace Sciences Meeting
, Orlando, FL, January 5–8,
AIAA
Paper No. 2009-1179.10.2514/6.2009-1179
15.
Porumbel
,
I.
, and
Menon
,
S.
,
2006
, “
Large Eddy Simulation of Bluff Body Stabilized Premixed Flame
,”
44th AIAA Aerospace Sciences Meeting and Exhibit
, Reno, NV, January 9–12,
AIAA
Paper No. 2006-152.10.2514/6.2006-152
16.
Crowe
,
C.
,
Sommerfeld
,
M.
, and
Tsuji
,
Y.
,
1997
,
Multiphase Flows With Droplets and Particles
,
CRC
,
Boca Raton
, FL.
17.
Yuen
,
M. C.
, and
Chen
,
L. W.
,
1976
, “
On Drag of Evaporating Liquid Drops
,”
Combust. Sci. Technol.
,
14
, pp.
147
154
.10.1080/00102207608547524
18.
Abramzon
,
B.
, and
Sirignano
,
W. A.
,
1989
, “
Droplet Vaporization Model for Spray Combustion Calculations
,”
Int. J. Heat Mass Transfer
,
32
(
9
), pp.
1605
1618
.10.1016/0017-9310(89)90043-4
19.
Kolaitis
,
D. I.
, and
Founti
,
M. A.
,
2006
, “
A Comparative Study of Numerical Models for Eulerian-Lagrangian Simulations of Turbulent Evaporating Sprays
,”
Int. J. Heat Fluid Flow
,
27
, pp.
424
435
.10.1016/j.ijheatfluidflow.2006.01.002
20.
Faeth
,
G.
,
1987
, “
Mixing, Transport, Combustion in Sprays
,”
Prog. Energy Combust. Sci.
,
13
(
4
), pp.
293
345
.10.1016/0360-1285(87)90002-5
21.
Patel
,
N.
,
Kirtas
,
M.
,
Sankaran
,
V.
, and
Menon
,
S.
,
2007
, “
Simulation of Spray Combustion in a Lean-Direct Injection Combustor
,”
Proc. Combust. Inst.
,
31
, pp.
2327
2334
.10.1016/j.proci.2006.07.232
22.
Madabhushi
,
R. K.
,
2003
, “
A Model for Numerical Simulation of Breakup of a Liquid Jet in Crossflow
,”
Atomization Sprays
,
13
, pp.
413
424
.10.1615/AtomizSpr.v13.i4.50
23.
Madabhushi
,
R. K.
,
Leong
,
M. Y.
, and
Hautman
,
D. J.
,
2004
, “
Simulation of the Break-Up of a Liquid Jet in Crossflow at Atmospheric Conditions
,”
ASME
Paper No. GT2004-54093.10.1115/GT2004-54093
24.
Brown
,
C. T.
,
McDonell
,
V. G.
, and
Kiel
,
B. V.
,
2006
, “
Test Bed for Characterization of Liquid Jet Injection Phenomenon at Augmentor Conditions
,”
42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference
, Sacramento, CA, July 9–12,
AIAA
Paper No. 2006-4569.10.2514/6.2006-4569
25.
Reitz
,
R. D.
,
1987
, “
Modeling Atomization Processes in High-Pressure Vaporizing Sprays
,”
Atomization Spray Technol.
,
3
, pp.
309
337
.
26.
Liu
,
A. B.
,
Mather
,
D.
, and
Reitz
,
R. D.
,
1993
, “
Modeling the Effects of Drop Drag and Breakup on Fuel Sprays
,”
SAE
Paper No. 930072.10.4271/930072
27.
Khosla
,
S.
, and
Crocker
,
D. S.
,
2004
, “
CFD Modeling of the Atomization of Plain Liquid Jets in Cross Flow for Gas Turbine Applications
,”
ASME
Paper No. GT2004-54269.10.1115/GT2004-54269
28.
Franzelli
,
B.
,
Riber
,
E.
,
Sanjosé
,
M.
, and
Poinsot
,
T.
,
2010
, “
A Two-Step Chemical Scheme for Kerosene-Air Premixed Flames
,”
Combust. Flame
,
157
(
7
), pp.
1364
1373
.10.1016/j.combustflame.2010.03.014
29.
Hannebique
,
G.
,
Sierra
,
P.
,
Riber
,
E.
, and
Cuenot
,
B.
,
2012
, “
Large Eddy Simulation of Reactive Two-Phase Flow in an Aeronautical Multipoint Burner
,”
Flow Turbul. Combust.
,
90
, pp.
449
469
.10.1007/s10494-012-9416-x
30.
Franzelli
,
B.
,
2011
, private communication.
31.
Goodwin
,
D.
,
Malaya
,
N.
,
Moffat
,
H.
, and
Speth
,
R.
,
2011
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Version 1.8, https://code.google.com/p/cantera/
32.
Patel
,
N.
, and
Menon
,
S.
,
2008
, “
Simulation of Spray Turbulence Flame Interactions in a Lean Direct Injection Combustor
,”
Combust. Flame
,
153
, pp.
228
257
.10.1016/j.combustflame.2007.09.011
33.
Marchioli
,
C.
,
Armenio
,
V.
, and
Soldati
,
A.
,
2007
, “
Simple and Accurate Scheme for Fluid Velocity Interpolation for Eulerian Lagrangian Computation of Dispersed Flows in 3D Curvilinear Grids
,”
Comput. Fluids
,
36
, pp.
1187
1198
.10.1016/j.compfluid.2006.11.004
34.
Miller
,
R. S.
, and
Bellan
,
J.
,
1999
, “
Direct Numerical Simulation of a Confined Three-Dimensional Gas Mixing Layer With One Evaporating Hydrocarbon-Droplet-Laden Stream
,”
J. Fluid Mech.
,
384
, pp.
293
338
.10.1017/S0022112098004042
35.
Yoo
,
C.
, and
Im
,
H.
,
2007
, “
Characteristic Boundary Conditions for Simulations of Compressible Reacting Flows With Multi-Dimensional, Viscous and Reaction Effects
,”
Combust. Theory Model.
,
11
(
2
), pp.
259
286
.10.1080/13647830600898995
36.
Smirnov
,
A.
,
Shi
,
S.
, and
Celik
,
I.
,
2001
, “
Random Flow Generation Technique for Large Eddy Simulations and Particle-Dynamics Modeling
,”
ASME Trans. J. Fluids Eng.
,
123
, pp.
359
371
.10.1115/1.1369598
37.
Coordinating Research Council
,
1983
, “
Handbook of Aviation Fuel Properties
,” CRC Tech. Report No. 530.
38.
Shanbhogue
,
S.
,
Husain
,
S.
, and
Lieuwen
,
T.
,
2009
, “
Lean Blowoff of Bluff Body Stabilized Flames: Scaling and Dynamics
,”
Prog. Energy Combust.
,
35
, pp.
98
120
.10.1016/j.pecs.2008.07.003
39.
Friedrich
,
R.
,
1999
, “
Modelling of Turbulence in Compressible Flows
,”
Transition, Turbulence and Combustion Modelling
, Vol.
6
,
Springer
,
Netherlands
, pp.
243
348
.
You do not currently have access to this content.