The design and optimization of an efficient internal air system of a gas turbine requires a thorough understanding of the flow and heat transfer in rotating disc cavities. The present study is devoted to the numerical modeling of flow and heat transfer in a cylindrical cavity with radial inflow and a comparison with the available experimental data. The simulations are carried out with axisymmetric and 3-D sector models for various inlet swirl and rotational Reynolds numbers up to 1.2 × 106. The pressure coefficients and Nusselt numbers are compared with the available experimental data and integral method solutions. Two popular eddy viscosity models, the Spalart–Allmaras and the k-ɛ, and a Reynolds stress model have been used. For cases with particularly strong vortex behavior the eddy viscosity models show some shortcomings, with the Spalart–Allmaras model giving slightly better results than the k-ɛ model. Use of the Reynolds stress model improved the agreement with measurements for such cases. The integral method results are also found to agree well with the measurements.

References

1.
Owen
,
J. M.
, and
Wilson
,
M.
,
2001
, “
Some Current Research in Rotating-Disc Systems
,”
Ann. N.Y. Acad. Sci.
,
934
, pp.
206
221
.10.1111/j.1749-6632.2001.tb05853.x
2.
Owen
,
J. M.
,
Pincombe
,
J. R.
, and
Rogers
,
R. H.
,
1985
, “
Source-Sink Flow Inside a Rotating Cavity
,”
J. Fluid Mech.
,
155
, pp.
233
265
.10.1017/S0022112085001793
3.
Hide
,
R.
,
1968
, “
On Source-Sink Flows in a Rotating Fluid
,”
J. Fluid Mech.
,
32
, pp.
737
764
.10.1017/S002211206800100X
4.
Wormley
,
D. N.
,
1969
, “
An Analytical Model for the Incompressible Flow in Short Vortex Chambers
,”
ASME J. Basic Eng.
,
91
(2)
, pp.
264
272
.10.1115/1.3571091
5.
Chew
,
J. W.
, and
Snell
,
R. J.
,
1988
, “
Prediction of the Pressure Distribution for Radial Inflow Between Co-Rotating Discs
,”
ASME GT and Aeroengine Congress
,
Amsterdam
, June 5–9, ASME Paper No. 88-GT-61, p. 9.
6.
Owen
,
J. M.
, and
Rogers
,
R. H.
,
1995
, “
Flow and Heat Transfer in Rotating-Disc Systems, Volume 2: Rotating Cavities
,” Mechanical Engineering Research Studies (Engineering Design Series), Research Studies Press, Somerset, UK/John Wiley & Sons Inc., New York.
7.
Shevchuk
,
I. V.
,
2009
, “
Convective Heat and Mass Transfer in Rotating Disk Systems
,” Lecture Notes in Applied and Computational Mechanics, Vol. 45, Springer, Heidelberg, Germany.10.1007/978-3-642-00718-7
8.
Childs
,
P. R. N.
,
2010
,
Rotating Flows
,
Butterworth-Heinemann
,
London
.
9.
Firouzian
,
M.
,
Owen
,
J. M.
,
Pincombe
,
J. R.
, and
Rogers
,
R. H.
,
1985
, “
Flow and Heat Transfer in a Rotating Cavity With a Radial Inflow of Fluid—Part 1: The Flow Structure
,”
Int. J. Heat Fluid Flow
,
6
(
4
), pp.
228
234
.10.1016/0142-727X(85)90054-2
10.
Firouzian
,
M.
,
Owen
,
J. M.
,
Pincombe
,
J. R.
, and
Rogers
,
R. H.
,
1986
, “
Flow and Heat Transfer in a Rotating Cavity With a Radial Inflow of Fluid—Part 2: Velocity, Pressure and Heat Transfer Measurements
,”
Int. J. Heat Fluid Flow
,
7
(
1
), pp.
21
27
.10.1016/0142-727X(86)90037-8
11.
Farthing
,
P. R.
,
Chew
,
J. W.
, and
Owen
,
J. M.
,
1991
, “
The Use of De-Swirl Nozzles to Reduce the Pressure Drop in a Rotating Cavity With a Radial Inflow
,”
ASME J. Turbomach.
,
113
(
1
), pp.
106
114
.10.1115/1.2927727
12.
Chew
,
J. W.
,
Farthing
,
P. R.
,
Owen
,
J. M.
, and
Stratford
,
B.
,
1989
, “
The Use of Fins to Reduce the Pressure Drop in a Rotating Cavity With a Radial Inflow
,”
ASME J. Turbomach.
,
111
(
3
), pp.
349
356
.10.1115/1.3262279
13.
Volchkov
,
E. P.
,
Semenov
,
S. V.
, and
Terekov
,
V.
,
1991
, “
Heat Transfer and Shear Stress at the End Wall of a Vortex Chamber
,”
Exp. Therm. Fluid Sci.
,
4
(
5
), pp.
546
557
.10.1016/0894-1777(91)90033-N
14.
Farthing
,
P. R.
,
1989
, “
The Effect of Geometry on Flow and Heat Transfer in a Rotating Cavity
,” D. Phil. thesis, University of Sussex, Brighton, UK.
15.
Morse
,
A. P.
,
1988
, “
Numerical Prediction of Turbulent Flow in Rotating Cavities
,”
ASME J. Turbomach.
,
110
, pp.
202
211
.10.1115/1.3262181
16.
Young
,
C.
, and
Snowsill
,
G. D.
,
2003
, “
CFD Optimization of Cooling Air Offtake Passages Within Rotor Cavities
,”
ASME J. Turbomach.
,
125
(
2
), pp.
380
386
.10.1115/1.1556405
17.
Gosman
,
A. D.
,
Lockwood
,
F. C.
, and
Loughhead
,
J. N.
,
1976
, “
Prediction of Recirculating, Swirling Flow in Rotating Disc Systems
,”
J. Mech. Eng. Sci.
,
18
(
3
), pp.
142
148
.10.1243/JMES_JOUR_1976_018_024_02
18.
Chew
,
J. W.
,
1984
, “
Prediction of Flow in Rotating Disc Systems Using the k-ε Turbulence Model
,”
ASME Gas Turbine Conference
,
Amsterdam
, June 4–7, ASME Paper No. 84-GT-229.
19.
Dacles-Mariani
,
J.
,
Zilliac
,
G. G.
,
Chow
,
J. S.
, and
Bradshaw
,
P.
,
1995
, “
Numerical/Experimental Study of a Wingtip Vortex in the Near Field
,”
AIAA J.
,
33
(
9
), pp.
1561
1568
.10.2514/3.12826
20.
Spalart
,
P. R.
, and
Shur
,
M.
,
1997
, “
On the Sensitization of Turbulence Models to Rotation and Curvature
,”
Aerosp. Sci. Technol.
,
1
(
5
), pp.
297
302
.10.1016/S1270-9638(97)90051-1
21.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Rech. Aerosp.
,
1
, pp.
5
21
.
22.
Torii
,
S.
, and
Yang
,
W. J.
,
1995
, “
Numerical Prediction of Fully Developed Turbulent Swirling Flows in an Axially Rotating Pipe by Means of a Modified k-ε Turbulence Model
,”
Int. J. Numer. Methods Heat Fluid Flow
,
5
(
2
), pp.
175
183
.10.1108/EUM0000000004116
23.
Smirnov
,
P. E.
, and
Menter
,
F. R.
,
2009
, “
Sensitization of the SST Turbulence Model to Rotation and Curvature by Applying the Spalart-Shur Correction Term
,”
ASME J. Turbomach.
,
131
(
4
), p.
8
.10.1115/1.3070573
24.
Iacovides
,
H.
, and
Toumpanakis
,
P.
,
1993
, “
Turbulence Modeling of Flows in Axisymmetric Rotor-Stator Systems
,”
Proceedings of the 5th International Symposium On Refined Flow Modeling Turbulence Measurements
,
Paris
, September 7–10, p.
835
.
25.
Elena
,
L.
, and
Schiestel
,
R.
,
1996
, “
Turbulence Modeling of Rotating Confined Flows
,”
Int. J. Heat Fluid Flow
,
17
, pp.
283
289
.10.1016/0142-727X(96)00032-X
26.
Chen
,
J. C.
, and
Lin
,
C. A.
,
1999
, “
Computations of Strongly Swirling Flows With Second-Moment Closures
,”
Int. J. Numer Methods Fluids
,
30
(
5
), pp.
493
508
.10.1002/(SICI)1097-0363(19990715)30:5<493::AID-FLD849>3.0.CO;2-3
27.
Virr
,
G. P.
,
Chew
,
J. W.
, and
Coupland
,
J.
,
1994
, “
Application of Computational Fluid Dynamics to Turbine Disc Cavities
,”
ASME J. Turbomach.
,
116
(
4
), pp.
701
708
.10.1115/1.2929463
28.
Soghe
,
R. D.
,
Innocenti
,
L.
,
Andreini
,
A.
, and
Poncet
,
S.
,
2010
, “
Numerical Benchmark of Turbulence Modeling in Gas Turbine Rotor-Stator System
,” Proceedings of the ASME Turbo Expo 2010: Power for Land Sea and Air (GT2010), Glasgow, UK, June 14–18,
ASME
Paper No. GT2010-22627, pp.
771
783
.10.1115/GT2010-22627
29.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
30.
Karman
,
von. Th.
,
1924
, “
Uber Laminare und Turbulente Reibung
,”
ZAMM
,
1
(
4
), pp.
233
252
.
31.
Chew
,
J. W.
,
1987
, “
Computation of Flow and Heat Transfer in Rotating Disc Systems
,”
Proceedings of the 2nd ASME-JSME Thermal Engineering Conference
,
Honolulu, HI, March 22–27
, pp.
361
367
.
32.
Chew
,
J. W.
, and
Rogers
,
R. H.
,
1988
, “
An Integral Method for the Calculation of Turbulent Forced Convection in a Rotating Cavity With Radial Outflow
,”
Int. J. Heat Fluid Flow
,
9
(
1
), pp.
37
48
.10.1016/0142-727X(88)90028-8
33.
May
,
N. E.
,
Chew
,
J. W.
, and
James
,
P. W.
,
1994
, “
Calculation of Turbulent Flow for an Enclosed Rotating Cone
,”
ASME J. Turbomach.
,
116
(
3
), pp.
548
554
.10.1115/1.2929444
34.
Moinier
,
P.
,
1999
, “
Algorithm Developments for an Unstructured Viscous Flow Solver
,” D. Phil. thesis, University of Oxford, Oxford, UK.
35.
FLUENT, 2006, “FLUENT 6.3 Documentation,” ANSYS, Inc
., Canonsburg, PA.
36.
Javiya
,
U.
,
Chew
,
J. W.
,
Hills
,
N. J.
,
Zhou
,
L.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2011
, “
CFD Analysis of Flow and Heat Transfer in a Direct Transfer Preswirl System
,”
ASME J. Turbomach.
,
134
(
3
), p.
031017
.10.1115/1.4003229
37.
Howard
,
J. H. G.
,
Patankar
,
S. V.
, and
Bordynuik
,
R. M.
,
1980
, “
Flow Prediction in Rotating Ducts Using Coriolis-Modified Turbulence Models
,”
ASME J. Fluids Eng.
,
102
, pp.
456
461
.10.1115/1.3240725
38.
Shur
,
M. L.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
,
2000
, “
Turbulence Modelling in Rotating and Curved Channels: Assessing the Spalart-Shur Correction
,”
AIAA J.
,
38
(
5
), pp.
784
792
.10.2514/2.1058
39.
Iaccarino
,
G.
,
Ooi
,
A.
,
Reif
,
B. A. P.
, and
Durbin
,
P.
,
1999
, “
RANS Simulations of Rotating Flows
,” Annual Research Briefs, Center for Turbulence Research, Stanford, CA.
40.
Poncet
,
S.
,
Soghe
,
R. D.
, and
Facchini
,
B.
,
2010
, “
RANS Modelling of Flow in Rotating Cavity System
,”
Fifth European Conference on Computational Fluid Dynamics (ECCOMAS CFD), Lisbon, Portugal, June 14–17
.
You do not currently have access to this content.