Alkanes such as methane, ethane, and propane make up a large portion of most natural gas fuels. Natural gas is the primary fuel used in industrial gas turbines for power generation. Because of this, a fundamental understanding of the physical characteristics such as the laminar flame speed is necessary. Most importantly, this information is needed at elevated pressures to have the most relevance to the gas turbine industry for engine design. This study includes experiments performed at elevated pressures, up to 10 atm initial pressure, and investigates the fuels in a pure form as well as in binary blends. Flame speed modeling was done using an improved version of the kinetics model that the authors have been developing over the past few years. Modeling was performed for a wide range of conditions, including elevated pressures. Experimental conditions include pure methane, pure ethane, 80/20 mixtures of methane/ethane, and 60/40 mixtures of methane/ethane at initial pressures of 1 atm, 5 atm, and 10 atm. Also included in this study are pure propane and 80/20 methane/propane mixtures at 1 atm and 5 atm. The laminar flame speed and Markstein length measurements were obtained from a high-pressure flame speed facility using a constant-volume vessel. The facility includes optical access, a high-speed camera, a schlieren optical setup, a mixing manifold, and an isolated control room. The experiments were performed at room temperature, and the resulting images were analyzed using linear regression. The experimental and modeling results are presented and compared with previously published data. The data herein agree well with the published data. In addition, a hybrid correlation was created to perform a rigorous uncertainty analysis. This correlation gives the total uncertainty of the experiment with respect to the true value rather than reporting the standard deviation of a repeated experiment. Included in the data set are high-pressure results at conditions where in many cases for the single-component fuels few data existed and for the binary blends no data existed prior to this study. Overall, the agreement between the model and data is excellent.

1.
Bradley
,
D.
,
Hicks
,
R. A.
,
Lawes
,
M.
,
Sheppard
,
C. G. W.
, and
Woolley
,
R.
, 1998, “
The Measurement of Laminar Burning Velocities and Markstein Numbers for Iso-Octane-Air and Iso-Octane-n-Heptane-Air Mixtures at Elevated Temperatures and Pressures in an Explosion Bomb
,”
Combust. Flame
0010-2180,
115
, pp.
126
144
.
2.
Lieuwen
,
T. C.
, and
Yang
,
V.
, 2005,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
,
AIAA
,
Danvers, MA
.
3.
Bourque
G.
,
Healy
D.
,
Curran
H.
,
Zinner
C.
,
Kalitan
D.
,
de Vries
J.
,
Aul
C.
, and
Petersen
E.
, 2008, “
Ignition and Flame Speed Kinetics of Two Natural Gas Blends With Higher Levels of Heavier Hydrocarbons
,”
ASME
Paper No. GT2008-51344.
4.
Vagelopoulos
,
C. M.
, and
Egolfopoulos
,
F. N.
, 1998, “
Direct Experimental Determination of Laminar Flame Speeds
,”
Proc. Combust. Inst.
1540-7489,
27
, pp.
513
519
.
5.
Zhao
,
Z.
,
Kazakov
,
A.
,
Li
,
J.
, and
Dryer
,
F. L.
, 2004, “
The Initial Temperature and N2 Dilution Effect on the Laminar Flame Speed of Propane/Air
,”
Combust. Sci. Technol.
0010-2202,
176
, pp.
1705
1723
.
6.
Jomaas
,
G.
,
Zheng
,
X. L.
,
Zhu
,
D. L.
, and
Law
,
C. K.
, 2005, “
Experimental Determination of Counterflow Ignition Temperatures and Laminar Flame Speeds of C2-C3 Hydrocarbons at Atmospheric and Elevated Pressures
,”
Proc. Combust. Inst.
1540-7489,
30
, pp.
193
200
.
7.
Gibbs
,
G. J.
, and
Calcote
,
H. F.
, 1959, “
Effect of Molecular Structure on Burning Velocity
,”
J. Chem. Eng. Data
0021-9568,
4
(
3
), pp.
226
237
.
8.
Bosschaart
,
K. J.
,
de Goey
,
L. P. H.
, and
Burgers
,
J. M.
, 2004, “
The Laminar Burning Velocity of Flames Propagating in Mixtures of Hydrocarbons and Air Measured With the Heat Flux Method
,”
Combust. Flame
0010-2180,
136
, pp.
261
269
.
9.
Konnov
,
A. A.
,
Dyakov
,
I. V.
, and
De Ruyck
,
J.
, 2003, “
Measurement of Adiabatic Burning Velocity in Ethane-Oxygen-Nitrogen and in Ethane-Oxygen-Argon Mixtures
,”
Exp. Therm. Fluid Sci.
0894-1777,
27
, pp.
379
384
.
10.
Dyakov
,
I. V.
,
De Ruyck
,
J.
, and
Konnov
,
A. A.
, 2007, “
Probe Sampling Measurements and Modeling of Nitric Oxide Formation in Ethane+Air Flames
,”
Fuel
0016-2361,
86
, pp.
98
105
.
11.
Van Maaren
,
A.
, and
De Goey
,
L. P. H.
, 1994, “
Stretch and the Adiabatic Burning Velocity of Methane-and Propane-Air Flames
,”
Combust. Sci. Technol.
0010-2202,
102
, pp.
309
314
.
12.
Aung
,
K. T.
,
Tseng
,
L. K.
,
Ismail
,
M. A.
, and
Faeth
,
G. M.
, 1995, “
Response to Comment by S. C. Taylor and D. B. Smith on ‘Laminar Burning Velocities and Markstein Numbers of Hydrocarbon/Air Flames’
,”
Combust. Flame
0010-2180,
102
, pp.
526
530
.
13.
Hassan
,
M. I.
,
Aung
,
K. T.
,
Kwon
,
O. C.
, and
Faeth
,
G. M.
, 1998, “
Properties of Laminar Premixed Hydrocarbon/Air Flames at Various Pressures
,”
J. Propul. Power
0748-4658,
14
, pp.
479
488
.
14.
Hassan
,
M. I.
,
Aung
,
K. T.
, and
Faeth
,
G. M.
, 1998, “
Measured and Predicted Properties of Laminar Premixed Methane/Air Flames at Various Pressures
,”
Combust. Flame
0010-2180,
115
, pp.
539
550
.
15.
Gu
,
X. J.
,
Haq
,
M. Z.
,
Lawes
,
M.
, and
Woolley
,
R.
, 2000, “
Laminar Burning Velocity and Markstein Lengths of Methane-Air Mixtures
,”
Combust. Flame
0010-2180,
121
, pp.
41
58
.
16.
Rozenchan
,
G.
,
Zhu
,
D. L.
,
Law
,
C. K.
, and
Tse
,
S. D.
, 2002, “
Outward Propagation, Burning Velocities, and Chemical Effects of Methane Flames up to 60 atm
,”
Proc. Combust. Inst.
1540-7489,
29
, pp.
1461
1470
.
17.
Tahtouh
,
T.
,
Halter
,
F.
, and
Mounaim-Rousselle
,
C.
, 2009, “
Measurement of Laminar Burning Speeds and Markstein Lengths Using a Novel Methodology
,”
Combust. Flame
0010-2180,
156
, pp.
1735
1743
.
18.
Metghalchi
,
M.
, and
Keck
,
J. C.
, 1980, “
Laminar Burning Velocity of Propane-Air Mixtures at High Temperature and Pressure
,”
Combust. Flame
0010-2180,
38
, pp.
143
154
.
19.
Zhou
,
M.
, and
Garner
,
C. P.
, 1996, “
Direct Measurements of Burning Velocity of Propane-Air Using Particle Image Velocimetry
,”
Combust. Flame
0010-2180,
106
, pp.
363
367
.
20.
Law
,
C. K.
, and
Kwon
,
O. C.
, 2004, “
Effects of Hydrocarbon Substitution on Atmospheric Hydrogen-Air Flame Propagation
,”
Int. J. Hydrogen Energy
0360-3199,
29
, pp.
867
879
.
21.
Liss
W. E.
,
Thrasher
W. H.
,
Steinmetz
G. F.
,
Chowdiah
P.
, and
Attari
A.
, 1992, “
Variability of Natural Gas Composition in Select Major Metropolitan Areas of the United States
,” GRI Report.
22.
Aldredge
,
R. C.
, and
Killingsworth
,
N. J.
, 2004, “
Experimental Evaluation of Markstein-Number Influence on Thermoacoustic Instability
,”
Combust. Flame
0010-2180,
137
, pp.
178
197
.
23.
Sung
,
C. J.
, and
Law
,
C. K.
, 1998, “
Dominant Chemistry and Physical Factors Affecting No Formation and Control in Oxy-Fuel Burning
,”
Proc. Combust. Inst.
1540-7489,
27
, pp.
1411
1418
.
24.
Settles
,
G. S.
, 2006,
Schlieren and Shadowgraph Techniques
,
Springer
,
Heidelberg, Germany
.
25.
Burke
,
M. P.
,
Chen
,
Z.
,
Ju
,
Y.
, and
Dryer
,
F. L.
, 2009, “
Effect of Cylindrical Confinement on the Determination of Laminar Flame Speeds Using Outwardly Propagating Flames
,”
Combust. Flame
0010-2180,
156
, pp.
771
779
.
26.
de Vries
,
J.
, 2009, “
A Study on Spherical Expanding Flame Speeds of Methane, Ethane, and Methane/Ethane Mixtures at Elevated Pressures
,” Ph.D. thesis, Texas A&M University, College Station, TX.
27.
Shakarji
,
C. M.
, 1998, “
Least-Squares Fitting Algorithms of the NIST Algorithm Testing System
,”
J. Res. Natl. Inst. Stand. Technol.
1044-677X,
103
, pp.
633
641
.
28.
Markstein
,
G. H.
, 1964,
Non-Steady Flame Propagation
,
Pergamon
,
New York
.
29.
Dowdy
,
D. R.
,
Smith
,
D. B.
,
Taylor
,
S. C.
, and
Williams
,
A.
, 1990, “
The Use of Expanding Spherical Flames to Determine Burning Velocities and Stretch Effects in Hydrogen/Air Mixtures
,”
Proc. Combust. Inst.
1540-7489,
23
, pp.
325
332
.
30.
Brown
,
J. M.
,
McLean
,
I. C.
,
Smith
,
D. B.
, and
Taylor
,
S. C.
, 1996, “
Markstein Lengths of Co/H2/Air Flames, Using Expanding Spherical Flames
,”
Proc. Combust. Inst.
1540-7489,
26
, pp.
875
881
.
31.
Reynolds
,
W. C.
, 1986, “
The Element Potential Method for Chemical Equilibrium Analysis: Implementation in the Interactive Program STANJAN
,” Department of Mechanical Engineering, Stanford University, Report No. Version 3.
32.
Moffat
,
R. J.
, 1988, “
Describing Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
17
.
33.
Lowry
,
W. B.
,
de Vries
,
J.
,
Krejci
,
M.
,
Petersen
,
E.
,
Serinyel
,
Z.
,
Metcalfe
,
W. K.
,
Curran
,
H.
, and
Bourque
,
G.
, 2010, “
Laminar Flame Speed Measurements and Modeling of Pure Alkanes and Alkane Blends at Elevated Pressures
,” ASME Paper No. GT2010-23050.
34.
Sun
,
C. J.
,
Sung
,
C. J.
,
He
,
L.
, and
Law
,
C. K.
, 1999, “
Dynamics of Weakly Stretched Flames: Quantitative Description and Extraction of Global Flame Parameters
,”
Combust. Flame
0010-2180,
118
, pp.
108
128
.
35.
Law
,
C. K.
, 1988, “
Dynamics of Stretched Flames
,”
Proc. Combust. Inst.
1540-7489,
22
, pp.
1381
1402
.
36.
Tsuji
,
H.
, and
Yamaoka
,
I.
, 1982, “
Structure and Extinction of Near-Limit Flames in a Stagnation Flow
,”
Proc. Combust. Inst.
1540-7489,
19
, pp.
1533
1540
.
37.
Kee
,
R. J.
,
Dixon-Lewis
,
G.
,
Warnatz
,
J.
,
Coltrin
,
M. E.
,
Miller
,
J. A.
, and
Moffat
,
H. K.
, 1998, “
A Fortran Computer Code Package for the Evaluation of Gas-Phase, Multicomponent Transport Properties
,”
Sandia National Laboratories
, Report No. SAND86-8246B.
38.
Poling
,
B. E.
,
Prausnitz
,
J. M.
, and
O’Connell
,
J. P.
, 2001,
The Properties of Gases and Liquids
,
McGraw-Hill
,
New York
.
39.
CHEMKIN-PRO, 2008, Reaction Design, San Diego, CA.
40.
O’Conaire
,
M.
,
Curran
,
H. J.
,
Simmie
,
J. M.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
, 2004, “
A Comprehensive Modeling Study of Hydrogen Oxidation
,”
Int. J. Chem. Kinet.
0538-8066,
36
, pp.
603
622
.
41.
Petersen
,
E. L.
,
Kalitan
,
D. M.
,
Simmons
,
S.
,
Bourque
,
G.
,
Curran
,
H. J.
, and
Simmie
,
J. M.
, 2007, “
Methane/Propane Oxidation at High Pressures: Experimental and Detailed Chemical Kinetic Modeling
,”
Proc. Combust. Inst.
1540-7489,
31
, pp.
447
454
.
42.
Healy
,
D.
,
Curran
,
H. J.
,
Dooley
,
S.
,
Simmie
,
J. M.
,
Kalitan
,
D. M.
,
Petersen
,
E. L.
, and
Bourque
,
G.
, 2008, “
Methane/Propane Mixture Oxidation at High Pressures and at High, Intermediate and Low Temperatures
,”
Combust. Flame
0010-2180,
155
, pp.
451
461
.
43.
Healy
,
D.
,
Curran
,
H. J.
,
Simmie
,
J. M.
,
Kalitan
,
D. M.
,
Zinner
,
C. M.
,
Barrett
,
A. B.
,
Petersen
,
E. L.
, and
Bourque
,
G.
, 2008, “
Methane/Ethane/Propane Mixture Oxidation at High Pressures and at High, Intermediate and Low Temperatures
,”
Combust. Flame
0010-2180,
155
, pp.
441
448
.
44.
Healy
,
D.
,
Curran
,
H. J.
,
Petersen
,
E. L.
,
Aul
,
C.
,
Donato
,
N.
,
Zinner
,
C.
, and
Bourque
,
G.
, 2010, “
n-Butane: Ignition Delay Measurements at High Pressure and Detailed Chemical Kinetic Simulations
,”
Combust. Flame
0010-2180,
157
, pp.
1526
1539
.
45.
Healy
,
D.
,
Curran
,
H. J.
,
Petersen
,
E. L.
,
Aul
,
C.
,
Donato
,
N.
,
Zinner
,
C.
, and
Bourque
,
G.
, 2010, “
Isobutane: Ignition Delay Time Measurements at High Pressure and Detailed Chemical Kinetic Simulations
,”
Combust. Flame
0010-2180,
157
, pp.
1540
1551
.
46.
Miller
,
J. A.
, and
Klippenstein
,
S. J.
, 2004, “
The H+C2H2(+M)⇄C2H3(+M) and H+C2H2(+M)⇄C2H5(+M) Reactions: Electronic Structure, Variational Transition-State Theory, and Solutions to a Two-Dimensional Master Equation
,”
Phys. Chem. Chem. Phys.
1463-9076,
6
, pp.
1192
1202
.
47.
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Davidson
,
D. F.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
V.
,
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
, and
Goldenberg
,
M.
, http://www.me.berkeley.edu/gri_mech/http://www.me.berkeley.edu/gri_mech/
48.
Egolfopoulos
,
F. N.
,
Wang
H.
,
Hanson
,
R. K.
,
Davidson
,
D. F.
,
Bowman
,
C. T.
,
Pitsch
,
H.
,
Law
,
C. K.
,
Cernansky
,
N. P.
,
Miller
,
D. L.
,
Tsang
,
W.
,
Lindstedt
,
R. P.
, and
Violi
,
A.
, 2009, “
JetSurF Version 1.0 A Working Model for n-Alkane Combustion
,” http://melchior.usc.edu/JetSurF/http://melchior.usc.edu/JetSurF/
49.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
, http://www.me.berkeley.edu/gri_mech/http://www.me.berkeley.edu/gri_mech/
You do not currently have access to this content.