Some rotor-grade gas turbine engine materials may contain multiple types of anomalies such as voids and inclusions that can be introduced during the manufacturing process. The number and size of anomalies can be very different for the various anomaly types, each of which may lead to premature fracture. The probability of failure of a component with multiple anomaly types can be predicted using established system reliability methods provided that the failure probabilities associated with individual anomaly types are known. Unfortunately, these failure probabilities are often difficult to obtain in practice. In this paper, an approach is presented that provides treatment for engine materials with multiple anomalies of multiple types. It is based on a previous work that has been extended to address the overlap among anomaly type failure modes using the method of Kaplan–Meier and is illustrated for risk prediction of a nickel-based superalloy. The results can be used to predict the risk of general materials with multiple types of anomalies.

1.
Federal Aviation Administration
, 2001, “
Advisory Circular—Damage Tolerance for High Energy Turbine Engine Rotors
,” U.S. Department of Transportation, AC 33.14-1.
2.
Federal Aviation Administration
, 2009, “
Advisory Circular—Guidance Material for Aircraft Engine Life-Limited Parts Requirements
,” U.S. Department of Transportation, AC 33.70-1.
3.
Federal Aviation Administration
, 2009, “
Advisory Circular—Damage Tolerance of Hole Features in High-Energy Turbine Engine Rotors
,” U.S. Department of Transportation, AC 33.70-2.
4.
Thoft-Christensen
,
P.
, and
Murotsu
,
Y.
, 1986,
Application of Structural Systems Reliability Theory
,
Springer-Verlag
,
New York
.
5.
Hoyland
,
A.
, and
Rausand
,
M.
, 1994,
System Reliability Theory Models and Statistical Methods
,
Wiley
,
New York
, pp.
355
414
.
6.
Enright
,
M. P.
, and
Frangopol
,
D. M.
, 1998, “
Failure Time Prediction of Deteriorating Fail-Safe Structures
,”
J. Struct. Eng.
0733-9445,
124
(
12
), pp.
1448
1457
.
7.
Melchers
,
R.
, 1999,
Structural Reliability Analysis and Prediction
, 2nd ed.,
Wiley
,
New York
.
8.
Enright
,
M. P.
, and
Huyse
,
L.
, 2006, “
Methodology for Probabilistic Life Prediction of Multiple Anomaly Materials
,”
AIAA J.
0001-1452,
44
(
4
), pp.
787
793
.
9.
Kaplan
,
E. L.
, and
Meier
,
P.
, 1958, “
Nonparametric Estimation From Incomplete Observations
,”
J. Am. Stat. Assoc.
0003-1291,
53
, pp.
457
481
.
10.
Nelson
,
W.
, 1972, “
Theory and Application of Hazard Plotting for Censored Failure Data
,”
Technometrics
0040-1706,
14
, pp.
945
966
.
11.
Aalen
,
O.
, 1978, “
Nonparametric Estimation of Partial Transition Probabilities in Multiple Decrement Models
,”
Ann. Stat.
0090-5364,
6
(
3
), pp.
534
545
.
12.
Ang
,
A. H.-S.
, and
Tang
,
W. H.
, 1975,
Probabilistic Concepts in Engineering Planning and Design
, Vol.
I
,
Wiley
,
New York
.
13.
Pepe
,
M. S.
, and
Mori
,
M.
, 1993, “
Kaplan–Meier, Marginal or Conditional Probability Curves in Summarizing Competing Risks Failure Time Data?
,”
Stat. Med.
0277-6715,
12
(
8
), pp.
737
751
.
14.
Crowder
,
M.
, 1997, “
A Test for Independence of Competing Risks With Discrete Failure Times
,”
Lifetime Data Anal
1380-7870,
3
, pp.
215
223
.
15.
Gaynor
,
J. J.
,
Feuer
,
E. J.
,
Tan
,
C. C.
,
Wu
,
D. H.
,
Little
,
C. R.
,
Straus
,
D. J.
,
Clarkson
,
B. D.
, and
Brennan
,
M. F.
, 1993, “
On the Use of Cause-Specific Failure and Conditional Failure Probabilities: Examples From Clinical Oncology Data
,”
J. Am. Stat. Assoc.
0003-1291,
88
(
422
), pp.
400
409
.
16.
Peterson
,
A. V.
, 1976, “
Bounds for a Joint Distribution Function With Fixed Subdistribution Functions: Applications to Competing Risks
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
73
, pp.
11
13
.
17.
Crowder
,
M.
, 1991, “
On the Identifiability Crisis in Competing Risks Analysis
,”
Scand. J. Stat.
0303-6898,
18
(
3
), pp.
223
233
.
18.
Slud
,
E. V.
, and
Rubinstein
,
L. V.
, 1983, “
Dependent Competing Risks and Summary Survival Curves
,”
Biometrika
0006-3444,
70
, pp.
643
649
.
19.
Klein
,
J. P.
, and
Moeschberger
,
M. L.
, 1988, “
Bounds on Net Survival Probabilities for Dependent Competing Risks
,”
Biometrics
0006-341X,
44
, pp.
529
538
.
20.
Zheng
,
M.
, and
Klein
,
J. P.
, 1995, “
Estimates of Marginal Survival for Dependent Competing Risks Based on an Assumed Copula
,”
Biometrika
0006-3444,
82
, pp.
127
138
.
21.
Moeschberger
,
M. L.
, and
David
,
H. A.
, 1974, “
Life Tests Under Competing Causes of Failure
,”
Technometrics
0040-1706,
16
, pp.
39
47
.
22.
Moeschberger
,
M. L.
, and
Klein
,
J. P.
, 1995, “
Statistical Methods for Dependent Competing Risks
,”
Lifetime Data Anal
1380-7870,
1
, pp.
195
204
.
23.
Chen
,
B. E.
,
Kramer
,
J. L.
,
Greene
,
M. H.
, and
Rosenberg
,
P. S.
, 2008, “
Competing Risks Analysis of Correlated Failure Time Data
,”
Biometrics
0006-341X,
64
, pp.
172
179
.
24.
Cai
,
J.
, and
Prentice
,
R. L.
, 1995, “
Estimating Equations for Hazard Ratio Parameters Based on Correlated Failure Time Data
,”
Biometrika
0006-3444,
82
, pp.
151
164
.
25.
Dignam
,
J. J.
,
Wieland
,
K.
, and
Rathouz
,
P. J.
, 2007, “
A Missing Data Approach to Semi-Competing Risks Problems
,”
Stat. Med.
0277-6715,
26
, pp.
837
856
.
26.
Tan
,
Z.
, 2007, “
Estimation of Exponential Component Reliability From Uncertain Life Data in Series and Parallel Systems
,”
Reliab. Eng. Syst. Saf.
0951-8320,
92
, pp.
223
230
.
27.
Roth
,
P. G.
, 1998, “
Probabilistic Rotor Design System—Final Report
,” Air Force Research Laboratory, Report No. AFRL-PR-WP-TR-1999-2122.
28.
Haldar
,
A.
, and
Mahadevan
,
S.
, 2000,
Probability, Reliability, and Statistical Methods in Engineering Design
,
Wiley
,
New York
.
29.
Wu
,
Y. T.
,
Enright
,
M. P.
, and
Millwater
,
H. R.
, 2002, “
Probabilistic Methods for Design Assessment of Reliability With Inspection
,”
AIAA J.
0001-1452,
40
(
5
), pp.
937
946
.
30.
Aerospace Industries Association Rotor Integrity Subcommittee
, 1997, “
The Development of Anomaly Distributions for Aircraft Engine Titanium Disk Alloys
,”
Proceedings of the 38th Structures, Structural Dynamics, and Materials Conference
, Kissimmee, FL, Apr. 7–10, pp.
2543
2553
.
31.
Leverant
,
G. R.
,
McClung
,
R. C.
,
Millwater
,
H. R.
, and
Enright
,
M. P.
, 2004, “
A New Tool for Design and Certification of Aircraft Turbine Rotors
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
(
1
), pp.
155
159
.
32.
McClung
,
R. C.
,
Enright
,
M. P.
,
Millwater
,
H. R.
,
Leverant
,
G. R.
, and
Hudak
,
S. J.
, 2004, “
A Software Framework for Probabilistic Fatigue Life Assessment of Gas Turbine Engine Rotors
,”
ASTM STP 1450
,
W. S.
Johnson
and
B. M.
Hillberry
, eds.,
ASTM International
,
West Conshohocken, PA
, pp.
199
215
.
33.
Meeker
,
W. Q.
, and
Escobar
,
L. A.
, 1998,
Statistical Methods for Reliability Data
,
Wiley
,
New York
, pp.
129
130
.
34.
Jha
,
S. K.
,
Caton
,
M. J.
, and
Larsen
,
J. M.
, 2008, “
Mean vs. Life-Limiting Fatigue Behavior of a Nickel-Based Superalloy
,”
Superalloys 2008, The Minerals, Metals, and Materials Society
, pp.
565
572
.
You do not currently have access to this content.