Abstract

Gamma-ray spectrum analysis was essential for radioactive environmental monitoring, and it had been widely used in many areas of nuclear engineering. However, for the low-energy region of gamma-ray spectrum, weak peaks were contained in the fast-decreasing background, so it was difficult to extract characteristic information from original spectra. In order to get a better analytic result based on wavelet methods in frequency domain, we had processed the gamma-ray spectrometer data of Chang’E-1 and well extracted some useful information of spectral characteristic peaks. Then, we preliminarily mapped the distribution of net peak counts for potassium on lunar surface, which indirectly reflected the distribution of elemental abundance. At last, we compared our analytic result with that of Apollo and Lunar Prospector and found some consistencies and differences.

1.
Harrington
,
T. M.
,
Marshall
,
J. H.
, and
Arnold
,
J. R.
, 1974, “
The Apollo Gamma-Ray Spectrometer
,”
Nucl. Instrum. Methods
0029-554X,
118
(
2
), pp.
401
411
.
2.
Hubbard
,
G. S.
,
Feldman
,
W.
, and
Cox
,
S. A.
, 2002, “
Lunar Prospector: First Results and Lessons Learned
,”
Acta Astronaut.
0094-5765,
50
, pp.
39
47
.
3.
Hasebe
,
N.
,
Yamashita
,
N.
, and
Okudaira
,
O.
, 2008, “
The High Precision Gamma-Ray Spectrometer for Lunar Polar Orbiter SELENE
,”
Adv. Space Res.
0273-1177,
42
, pp.
323
330
.
4.
Hasebe
,
N.
,
Shibamura
,
E.
, and
Miyachi
,
T.
, 2009, “
First Results of High Performance Ge Gamma-Ray Spectrometer Onboard Lunar Orbiter SELENE (KAGUYA)
,”
J. Phys. Soc. Jpn.
0031-9015,
78
, pp.
18
25
.
5.
Ryan
,
C. G.
,
Clayton
,
E.
, and
Criffin
,
W. L.
, 1988, “
SNIP, A Statistics-Sensitive Background Treatment for the Quantitative Analysis of PIXE Spectra in Geoscience Applications
,”
Nucl. Instrum. Methods Phys. Res. B
0168-583X,
34
, pp.
396
402
.
6.
Morhac
,
M.
,
Kliman
,
J.
, and
Matousek
,
V.
, 1997, “
Background Elimination Methods for Multidimensional Coincidence γ-Ray Spectra
,”
Nucl. Instrum. Methods Phys. Res. A
0168-9002,
401
, pp.
113
132
.
7.
Morhac
,
M.
, 2007, “
Multidimensional Peak Searching Algorithm for Low-Statistics Nuclear Spectra
,”
Nucl. Instrum. Methods Phys. Res. A
0168-9002,
581
, pp.
821
830
.
8.
Morhac
,
M.
, and
Matousek
,
V.
, 1974, “
Sophisticated Algorithms of Analysis of Spectroscopic Data
,”
Appl. Spectrosc.
0003-7028,
62
, pp.
91
97
.
9.
Zhu
,
M. H.
,
Liu
,
L. G.
, and
You
,
Z.
, 2009, “
Heuristic Approach for Peak Regions Estimation in Gamma-Ray Spectra Measured by a NaI Detector
,”
Chinese Phys. C
,
33
, pp.
205
209
.
10.
Nagatsuka
,
Y.
,
Otsuki
,
M.
, and
Nagasawa
,
Y.
, 2002, “
Automatic Background Estimation of Spectra
,”
J. Surf. Anal.
1341-1756,
9
, pp.
291
294
.
11.
Shen
,
C. Y.
,
Wei
,
T. Y.
, and
Tang
,
M. H.
, 1994, “
Automatic Treatment Method of Background Continuum of γ-Ray Spectra From Whole Body Counting With NaI(Tl)
,”
Radiation Protection
,
14
, pp.
148
152
.
12.
Shi
,
D.
,
Di
,
Y.
, and
Zhou
,
C.
, 2006, “
Comparative Study on γ Energy Spectrum Denoise by Fourier and Wavelet Transforms
,”
Nucl. Electron. Detect. Technol.
0258-0934,
26
, pp.
134
137
.
13.
Mittermayr
,
C. R.
,
Nikolov
,
S. G.
, and
Hutter
,
H.
, 1996, “
Wavelet Denoising of Gaussian Peaks: A Comparative Study
,”
Chemom. Intell. Lab. Syst.
0169-7439,
34
, pp.
187
202
.
14.
Gang
,
X.
,
Li
,
D.
, and
Benai
,
Z.
, 2004, “
A Nonlinear Wavelet Method for Data Smoothing of Low-Level Gamma-Ray Spectra
,”
Nucl. Sci. Technol.
0546-9015,
41
, pp.
73
76
.
15.
Xu
,
H. K.
,
Fang
,
F.
, and
Cui
,
J. L.
, 2004, “
The Design of Spectrum Analysis System Based on LabVIEW
,”
Nucl. Technol.
0029-5450,
23
, pp.
66
69
.
16.
Zou
,
Y. L.
,
Xu
,
L.
, and
Ouyang
,
Z. Y.
, 2004,“
KREEP Rocks
,”
Chinese J. Geochem.
,
23
, pp.
65
70
.
17.
Gillis
,
J. J.
,
Jolliff
,
B. L.
, and
Korotev
,
R. L.
, 2004, “
Lunar Surface Geochemistry: Global Concentrations of Th, K, and FeO as Derived From Lunar Prospector and Clementine Data
,”
Chinese J. Geochem.
,
68
, pp.
3791
3805
.
You do not currently have access to this content.