This paper outlines the development of a comprehensive numerical framework for the partially stratified charge (PSC) lean-burn natural gas engine. A 3D model of the engine was implemented to represent fluid motion and combustion. The spark ignition model was based on the works of Herweg and Maly (1992, “A Fundamental Model for Flame Kernel Formation in SI Engines,” SAE Technical Publication, Paper No. 922243) and Tan and Reitz (2006, “An Ignition and Combustion Model Based on the Level-Set Method for Spark Ignition Engine Multidimensional Modeling,” Combust. Flame, 145, pp. 1–15). The EDC model (Ertesvåg and Magnussen, 2000, “The Eddy Dissipation Turbulence Energy Cascade Model,” Combust. Sci. Technol., 159, pp. 213–235) with a two-step mechanism was used to model natural gas turbulent combustion process. An open geometry simulation strategy was adopted to account for intake-exhaust gas and valve movements. Each simulation was executed for multiple cycles to produce a representative residual gas fraction. The numerical results were compared with the experimental data obtained on the Ricardo Hydra single cylinder research engine for both homogeneous and PSC cases and they were found to be in excellent agreement in pressure trace and heat release rate. The detailed investigation of the numerical data showed the development of an ignitable mixture under PSC cases, allowing stable kernel growth well beyond the lean misfire limit of the bulk mixture. Furthermore, limits on successful ignition can be identified using the ignition model, which exhibited self-similar behavior in terms of flame speed and turbulent fluctuation. It can also be shown that, at ultralean air-fuel ratios, the PSC plume helps replicate the ignition conditions that can be found under stoichiometric operation.

1.
Franklin
,
M. L.
,
Kittelson
,
D. B.
,
Leuer
,
R. H.
, and
Pipho
,
M. J.
, 1994, “
A PC-Based Fuel and Ignition Control System Used to Map the 3-D Surfaces of Torque and Emissions Versus Air-Fuel Ratio and Ignition Timing
,” SAE Technical Publication, Paper No. 940546.
2.
Corbo
,
P.
,
Gambino
,
M.
,
Iannaccone
,
S.
, and
Unich
,
A.
, 1995, “
Comparison Between Lean-Burn and Stoichiometric Technologies for CNG Heavy-Duty Engines
,” SAE Technical Publication, Paper No. 950057.
3.
Chiu
,
J. P.
,
Wegrzyn
,
J.
, and
Murphy
,
K. M.
, 2004, “
Low Emissions Class 8 Heavy-Duty, On-Highway Natural Gas and Gasoline Engine
,” SAE Technical Publication, Paper No. 2004-01-2982.
4.
Einewall
,
P.
,
Tunestål
,
P.
, and
Johansson
,
B.
, 2005, “
Lean Burn Natural Gas Operation vs. Stoichiometric Operation With EGR and a Three Way Catalyst
,” SAE Technical Publication, Paper No. 2005-01-0250.
5.
Das
,
A.
, and
Watson
,
H. C.
, 1997, “
Development of a Natural Gas Spark Ignition Engine for Optimum Performance
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
211
, pp.
361
378
.
6.
Chen
,
S. K.
, and
Beck
,
N. J.
, 2001, “
Gas Engine Combustion Principles and Applications
,” SAE Technical Publication, Paper No. 2001-01-2489.
7.
Reynolds
,
C.
,
Evans
,
R. L.
,
Andreassi
,
L.
,
Cordiner
,
S.
, and
Mulone
,
V.
, 2005, “
The Effect of Varying Injected Charge Stoichiometry in a Partially Stratified Charge Natural Gas Engine
,” SAE Technical Publication, Paper No. 2005-01-0247.
8.
Chung
,
S. S.
,
Hua
,
J. Y.
,
Park
,
J. S.
,
Lee
,
M. J.
, and
Yeom
,
J. K.
, 2003, “
Rapid Bulk Combustion of Lean Premixture by Using Radical Injection Method and an Application to an Actual Engine
,” SAE Technical Publication, Paper No. 2003-01-3212.
9.
Hotta
,
K.
,
Yoshikawa
,
Y.
,
Okuma
,
K.
,
Moriue
,
O.
, and
Murase
,
E.
, 2007, “
Characteristics of Combustion in Lean Mixtures Initiated by an Imploding Detonation Plug
,” SAE Technical Publication, Paper No. 2007-01-1911.
10.
Kettner
,
M.
,
Fischer
,
J.
,
Nawerck
,
A.
,
Tribulowski
,
J.
,
Spicher
,
U.
, and
Velji
,
A.
, 2004, “
The BPI Flame Jet Concept to Improve the Inflammation of Lean-Burn Mixtures in Spark-Ignited Engines
,” SAE Technical Publication, Paper No. 2004-01-0035.
11.
Murase
,
E.
,
Ono
,
S.
,
Hanada
,
K.
, and
Oppenheim
,
A. K.
, 1994, “
Pulsed Combustion Jet Ignition in Lean Mixtures
,” SAE Technical Publication, Paper No. 942048.
12.
Robinet
,
C.
,
Higelin
,
P.
,
Moreau
,
B.
,
Pajot
,
O.
, and
Andrzejewski
,
J.
, 1999, “
A New Firing Concept for Internal Combustion Engines: IAPIR
,” SAE Technical Publication, Paper No. 1999-01-0621.
13.
Evans
,
R. L.
, 2000, “
Control Method for Spark-Ignition Engines
,” U.S. Patent No. 6,032,640.
14.
Reynolds
,
C.
, and
Evans
,
R. L.
, 2004, “
Improving Emissions and Performance Characteristics of Lean Burn Natural Gas Engines Through Partial Stratification
,”
Int. J. Eng. Res.
,
5
(
1
), pp.
105
114
.
15.
Andreassi
,
L.
,
Cordiner
,
S.
, and
Rocco
,
V.
, 2003, “
Modelling the Early Stage of Spark Ignition Engine Combustion Using the KIVA-3V Code Incorporating an Ignition Model
,”
Int. J. Engine Res.
1468-0874,
4
(
3
), pp.
179
192
.
16.
Andreassi
,
L.
,
Cordiner
,
S.
,
Mulone
,
V.
,
Reynolds
,
C.
, and
Evans
,
R. L.
, 2003, “
Numerical and Experimental Comparison of the Performance of a Natural Gas Fuelled IC Engine
,” SAE Technical Publication, SAE_NA Paper No. 2003-01-44.
17.
Andreassi
,
L.
,
Cordiner
,
S.
,
Mulone
,
V.
,
Reynolds
,
C.
, and
Evans
,
R. L.
, 2004, “
Numerical-Experimental Comparison of the Performance of a Partially Stratified Charge Natural Gas Fuelled Engine
,” ASME Paper No. ICEF2004-912.
18.
Chan
,
E. C.
,
Evans
,
R. L.
,
Davy
,
M. H.
, and
Cordiner
,
S.
, 2007, “
Pre-Ignition Characterization of Partially Stratified Natural Gas Injection
,” SAE Technical Publication, Paper No. 2007-01-1913.
19.
Mezo
,
A. Z.
,
Davy
,
M. H.
, and
Evans
,
R. L.
, 2008, “
Image-Based Analysis of Partially Stratified Natural Gas Combustion in a Constant Volume Bomb
,”
Combustion Institute Canadian Section Spring Technical Meeting
.
20.
Kalghatgi
,
G. T.
, 1985, “
Early Flame Development in a Spark-Ignition Engine
,”
Combust. Flame
0010-2180,
60
, pp.
299
308
.
21.
Heywood
,
J. B.
, 1988,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
22.
Eichenberger
,
D. A.
, and
Roberts
,
W. L.
, 1999, “
Effect of Unsteady Stretch on Spark Ignition Kernel Survival
,”
Combust. Flame
0010-2180,
118
(
3
), pp.
469
478
.
23.
Deshaies
,
B.
, and
Joulin
,
G.
, 1984, “
On the Initiation of a Spherical Flame Kernel
,”
Combust. Sci. Technol.
0010-2202,
37
, pp.
99
116
.
24.
Herweg
,
R.
, and
Maly
,
R. R.
, 1992, “
A Fundamental Model for Flame Kernel Formation in SI Engines
,” SAE Technical Publication, Paper No. 922243.
25.
Tan
,
Z.
, and
Reitz
,
R. D.
, 2006, “
An Ignition and Combustion Model Based on the Level-Set Method for Spark Ignition Engine Multidimensional Modeling
,”
Combust. Flame
0010-2180,
145
, pp.
1
15
.
26.
Maly
,
R. R.
, 1984, “
Spark Ignition
,”
Fuel Economy
,
J. C.
Hillard
and
G. S.
Springer
, eds.,
Plenum
,
New York
.
27.
Zimont
,
V. L.
, and
Lipatnikov
,
A. N.
, 1995, “
A Numerical Model of Premixed Turbulent Combustion of Gases
,”
Chem. Phys. Rep.
1074-1550,
14
(
7
), pp.
993
1025
.
28.
Ertesvåg
,
I. S.
, and
Magnussen
,
B. F.
, 2000, “
The Eddy Dissipation Turbulence Energy Cascade Model
,”
Combust. Sci. Technol.
0010-2202,
159
, pp.
213
235
.
29.
Hong
,
S.
,
Assanis
,
D.
, and
Wooldridge
,
M.
, 2002, “
Multi-Dimensional Modeling of NO and Soot Emissions With Detailed Chemistry and Mixing in a Direct Injection Natural Gas Engine
,” SAE Technical Publication, Paper No. 2002-01-1112.
30.
Hong
,
S.
,
Assanis
,
D.
,
Wooldridge
,
M.
,
Im
,
H.
,
Kurtz
,
E.
, and
Pitsch
,
H.
, 2004, “
Modeling of Diesel Combustion and NO Emissions Based on a Modified Eddy Dissipation Concept
,” SAE Technical Publication, Paper No. 2004-01-0107.
31.
Emery
,
P.
,
Maroteaux
,
F.
, and
Sorine
,
M.
, 2003, “
Modeling of Combustion in Gasoline Direct Injection Engines for the Optimization of Engine Management System Through Reduction of Three-Dimensional Models to (n × One-Dimensional) Models
,”
ASME J. Fluids Eng.
0098-2202,
125
(
3
), pp.
520
533
.
32.
Pope
,
S. B.
, 2000,
Turbulent Flows
,
Cambridge University Press
,
Cambridge
.
33.
Magnussen
,
B. F.
, 2005, “
The Eddy Dissipation Concept—A Bridge Between Science and Technology
,”
ECCOMAS Thematic Conference on Computational Combustion
.
34.
Smooke
,
M. D.
, 1991,
Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames
,
Springer-Verlag
,
Berlin
.
35.
Peters
,
N.
, and
Rogg
,
B.
, 1993,
Reduced Kinetic Mechanisms for Applications in Combustion Systems
,
Springer
,
New York
.
36.
Sánchez
,
A. L.
,
Lépinette
,
A.
,
Bollig
,
M.
,
Liñán
,
A.
, and
Lázaro
,
B.
, 2000, “
The Reduced Kinetic Description of Lean Premixed Combustion
,”
Combust. Flame
0010-2180,
123
, pp.
436
464
.
37.
Pope
,
S. B.
, 1997, “
Computationally Efficient Implementation of Combustion Chemistry Using In-Situ Adaptive Tabulation
,”
Combust. Theory Modell.
1364-7830,
1
, pp.
41
63
.
38.
Metghalchi
,
M.
, and
Keck
,
J. C.
, 1980, “
Laminar Burning Velocity of Propane-Air Mixtures at High Temperature and Pressure
,”
Combust. Flame
0010-2180,
38
, pp.
143
154
.
39.
Bentebbiche
,
A.
,
Bouhadef
,
K.
,
Veynante
,
D.
, and
Esposito
,
E.
, 2005, “
Numerical Investigation for Prediction of Pollutants Formation Type CO and NO in Premixed Turbulent Flame Using an Extended Coherent Flame Model
,”
Forsch. Ingenieurwes.
0015-7899,
69
, pp.
236
245
.
You do not currently have access to this content.