Metal mesh foil bearings (MMFBs) are inexpensive compliant gas bearing type that aim to enable high speed, high temperature operation of small turbomachinery. A MMFB with an inner diameter of 28.00 mm and length of 28.05 mm is constructed with low cost and common materials. The bearing incorporates a copper mesh ring, 20% in compactness, and offering large material damping beneath a 0.127 mm thick preformed top foil. Prior experimentations (published papers) provide the bearing structure force coefficients and the break away torque for bearing lift off. Presently, the MMFB replaces a compressor in a small turbocharger driven test rig. Impact load tests aid to identify the direct and cross-coupled rotor dynamic force coefficients of the floating MMFB while operating at a speed of 50 krpm. Tests conducted with and without shaft rotation show the MMFB direct stiffness is less than its structural (static) stiffness, 25% lower at an excitation frequency of 200 Hz. The thin air film acting in series with the metal mesh support and separating the rotating shaft and the bearing inner surface while airborne reduces the bearing stiffness. The equivalent viscous damping is nearly identical with and without shaft rotation. The identified loss factor, best representing the hysteretic type damping from the metal mesh, is high at 0.50 in the frequency range 0–200 Hz. This magnitude reveals large mechanical energy dissipation ability from the MMFB. The measurements also show appreciable cross directional motions from the unidirectional impact loads, thus generating appreciable cross-coupled force coefficients. Rotor speed coast down measurements reveal pronounced subsynchronous whirl motion amplitudes locked at distinct frequencies. The MMFB stiffness hardening nonlinearity produces the rich frequency forced response. The synchronous as well as subsynchronous motions peak while the shaft traverses its critical speeds. The measurements establish reliable operation of the test MMFB while airborne.

1.
San Andrés
,
L.
,
Chirathadam
,
T. A.
, and
Kim
,
T. H.
, 2010, “
Measurements of Structural Stiffness and Damping Coefficients in a Metal Mesh Foil Bearing
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
132
(
3
), p.
032503
.
2.
Ertas
,
B. H.
,
Al-Khateeb
,
E. M.
, and
Vance
,
J. M.
, 2003, “
Rotordynamic Bearing Dampers for Cryogenic Rocket Engine Turbopumps
,”
J. Propul. Power
0748-4658,
19
(
4
), pp.
674
682
.
3.
San Andrés
,
L.
,
Kim
,
T. H.
,
Chirathadam
,
T. A.
, and
Ryu
,
K.
, 2010, “
Measurements of Drag Torque, Lift-Off Journal Speed and Temperature in a Metal Mesh Foil Bearing
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
132
(
11
), pp.
112503
.
4.
Tiwari
,
R.
,
Lees
,
A. W.
, and
Friswell
,
M. I.
, 2004, “
Identification of Dynamic Bearing Parameters: A Review
,”
Shock Vib. Dig.
0583-1024,
36
, pp.
99
124
.
5.
Delgado
,
A.
, and
San Andrés
,
L.
, 2009, “
Nonlinear Identification of Mechanical Parameters in a Squeeze Film Damper With Integral Mechanical Seal
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
131
, p.
042504
.
6.
Morton
,
P. G.
, 1971, “
Measurements of the Dynamic Characteristics of a Large Sleeve Bearing
,”
ASME J. Lubr. Technol.
0022-2305,
93
(
1
), pp.
143
150
.
7.
Sakakida
,
H.
,
Asatsu
,
S.
, and
Tasaki
,
S.
, 1992, “
The Static and Dynamic Characteristics of 23 Inch (584.2 mm) Diameter Journal Bearing
,”
Proceedings of the Fifth International Conference Vibration in Rotating Machinery, Inst. Mech. Eng.
, Bath, UK.
8.
Zhang
,
J. X.
,
Robets
,
J. B.
, and
Ellis
,
J.
, 1994, “
Experimental Behavior of a Short Cylindrical Squeeze Film Damper Executing Circular Centered Orbits
,”
ASME J. Tribol.
0742-4787,
116
(
3
), pp.
528
534
.
9.
Childs
,
D.
, and
Hale
,
K.
, 1994, “
A Test Apparatus and Facility to Identify the Rotordynamic Coefficients of High-Speed Hydrostatic Bearings
,”
ASME J. Tribol.
0742-4787,
116
, pp.
337
344
.
10.
Glienicke
,
J.
, 1967, “
Experimental Investigation of the Stiffness and Damping Coefficients of Turbine Bearings and Their Application to Instability Prediction
,”
Proc. Inst. Mech. Eng.
0020-3483,
181
, (
3B
), pp.
116
129
.
11.
Ertas
,
B.
,
Drexel
,
M.
,
Van Dam
,
J.
, and
Hallman
,
J.
, 2009, “
A General Purpose Test Facility for Evaluating Gas Lubricated Journal Bearings
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
131
, p.
022502
.
12.
De Santiago
,
O. C.
, and
San Andrés
,
L.
, 2007, “
Field Methods for Identification of Bearing Support Parameters—Part II: Identification From Rotor Dynamic Response Due to Imbalances
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
, pp.
213
219
.
13.
Murphy
,
B. T.
,
Scharrer
,
J. K.
, and
Sutton
,
R. F.
, 1990, “
The Rocketdyne Multifunction Tester. Part I: Test Method
,”
Proceedings of the Workshop on Rotordynamic Instability Problems in High Performance Turbomachinery
, NASA Conference Publication No. CP-3122, pp.
347
359
.
14.
Tiwari
,
R.
,
Lees
,
A. W.
, and
Friswell
,
M. I.
, 2002, “
Identification of Speed-Dependent Bearing Parameters
,”
J. Sound Vib.
0022-460X,
254
(
5
), pp.
967
986
.
15.
Nordmann
,
R.
, and
Schollhorn
,
K.
, 1980, “
Identification of Stiffness and Damping Coefficients of Journal Bearings by Means of the Impact Method
,”
Proceedings of the Second International Conference on Vibrations in Rotating Machinery, Inst. Mech. Eng.
, Cambridge, UK, pp.
231
238
.
16.
Zhang
,
Y. Y.
,
Xie
,
Y.
, and
Qiu
,
D. M.
, 1992, “
Identification of Linearized Oil-Film Coefficients in a Flexible Rotor-Bearing System, Part II: Experiment
,”
J. Sound Vib.
0022-460X,
152
(
3
), pp.
549
559
.
17.
De Santiago
,
O. C.
, and
San Andrés
,
L.
, 2007, “
Field Methods for Identification of Bearing Support Parameters—Part I: Identification From Transient Rotor Dynamic Response Due to Impacts
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
, pp.
205
212
.
18.
De Santiago
,
O.
, and
San Andrés
,
L.
, 2007, “
Experimental Identification of Bearing Dynamic Force Coefficients in a Flexible Rotor—Further Developments
,”
Tribol. Trans.
1040-2004,
50
(
1
), pp.
114
126
.
19.
Al-Khateeb
,
E. M.
, 2002, “
Design, Modeling and Experimental Investigation of Wire Mesh Vibration Dampers
,” Ph.D. thesis, Texas A&M University, College Station, TX.
20.
DellaCorte
,
C.
,
Radil
,
K. C.
,
Bruckner
,
R. J.
, and
Howard
,
S. A.
, 2008, “
Design, Fabrication, and Performance of Open Source Generation I and II Compliant Hydrodynamic Gas Foil Bearings
,”
Tribol. Trans.
1040-2004,
51
, pp.
254
264
.
21.
Dodge
,
H. L.
, 1913,
The Physical Review
,
American Institute of Physics
,
New York
, p.
439
.
22.
Boyd
,
J. E.
, 1917,
Strength of Materials
,
McGraw-Hill
,
New York
.
23.
DellaCorte
,
C.
,
Radil
,
K. C.
,
Bruckner
,
R. J.
, and
Howard
,
S. A.
, 2006, “
A Preliminary Foil Gas Bearing Performance Map
,”
NASA
Report No. NASA/TM-2006-214343.
24.
San Andrés
,
L.
, 2010, “
Modern Lubrication Theory, Experimental Identification of Bearing Force Coefficients
,” Notes 14, Texas A&M University Digital Libraries, http://repository.tamu.edu/handke/1969.1/93197http://repository.tamu.edu/handke/1969.1/93197.
25.
Childs
,
D.
, 1993,
Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis
,
Wiley
,
New York
, Chap. 1.
26.
Chirathadam
,
T. A.
, 2009, “
Measurements of Drag Torque and Lift Off Speed and Identification of Stiffness and Damping in a Metal Mesh Foil Bearing
,” MS thesis, Texas A&M University, College Station, TX.
27.
Ginsberg
,
J.
, 2001,
Mechanical and Structural Vibrations
,
Wiley
,
New York
, pp.
137
139
.
28.
Coleman
,
H. W.
, and
Steele
,
G. W.
, 1998,
Experimentation and Uncertainty Analysis for Engineers
,
Wiley
,
New York
.
29.
Bently
,
D. E.
,
Hatch
,
C. T.
, and
Grissom
,
B.
, 2002,
Fundamentals of Rotating Machinery Diagnostics
,
Bently Pressurized Bearing
,
Minden, NV
, p.
138
.
30.
San Andrés
,
L.
, and
Kim
,
T. H.
, 2008, “
Forced Nonlinear Response of Gas Foil Bearing Supported Supported Rotors
,”
Tribol. Int.
0301-679X,
41
(
8
), pp.
704
7115
.
You do not currently have access to this content.