The removal of noise and outliers from health signals is an important problem in jet engine health monitoring. Typically, health signals are time series of damage indicators, which can be sensor measurements or features derived from such measurements. Sharp or sudden changes in health signals can represent abrupt faults and long term deterioration in the system is typical of gradual faults. Simple linear filters tend to smooth out the sharp trend shifts in jet engine signals and are also not good for outlier removal. We propose new optimally designed nonlinear weighted recursive median filters for noise removal from typical health signals of jet engines. Signals for abrupt and gradual faults and with transient data are considered. Numerical results are obtained for a jet engine and show that preprocessing of health signals using the proposed filter significantly removes Gaussian noise and outliers and could therefore greatly improve the accuracy of diagnostic systems.

1.
Volponi
,
J.
, and
Urban
,
L. A.
, 1992, “
Mathematical Methods of Relative Engine Performance Diagnostics
,”
SAE Trans.: J. Aerosp.
,
101
, pp.
2025
2050
.
2.
Doel
,
D. L.
, 1994, “
An Assessment of Weighted Least Squares Based Gas Path Analysis
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
116
(
2
), pp.
366
373
.
3.
Simon
,
D.
, 2008, “
A Comparison of Filtering Approaches for Aircraft Engine Health Estimation
,”
Aerosp. Sci. Technol.
1270-9638,
12
(
4
), pp.
276
284
.
4.
DePold
,
H.
, and
Gass
,
F. D.
, 1999, “
The Application of Expert Systems and Neural Networks to Gas Turbine Prognostics and Diagnostics
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
121
(
4
), pp.
607
612
.
5.
Lu
,
P. J.
,
Zhang
,
M. C.
,
Hsu
,
T. C.
, and
Zhang
,
J.
, 2001, “
An Evaluation of Engine Fault Diagnostics Using Artificial Neural Networks
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
123
(
2
), pp.
340
346
.
6.
Ganguli
,
R.
, 2003, “
Application of Fuzzy Logic for Fault Isolation of Jet Engines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
(
3
), pp.
617
623
.
7.
Romessis
,
C.
, and
Mathioudakis
,
K.
, 2006, “
Bayesian Network Approach for Gas Path Fault Diagnosis
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
128
(
1
), pp.
64
72
.
8.
Romessis
,
C.
,
Kamboukos
,
P.
, and
Mathioudakis
,
K.
, 2007, “
The Use of Probabilistic Reasoning to Improve Least Squares Based Gas Path Diagnostics
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
(
4
), pp.
970
976
.
9.
Mathioudakis
,
K.
, and
Romessis
,
C.
, 2004, “
Probabilistic Neural Network for Validation of On-Board Jet Engine Data
,”
J. Aeros. Eng.
,
218
(
G1
), pp.
59
72
. 0002-7820
10.
Volponi
,
A. J.
,
DePold
,
H.
,
Ganguli
,
R.
, and
Daguang
,
C.
, 2003, “
The Use of Kalman Filter and Neural Network Methodologies in Gas Turbine Performance Diagnostics: A Comparative Study
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
(
4
), pp.
917
924
.
11.
Ganguli
,
R.
, 2003, “
Jet Engine Gas-Path Measurement Filtering Using Center Weighted Idempotent Median Filters
,”
J. Propul. Power
0748-4658,
19
(
5
), pp.
930
937
.
12.
Katipamula
,
S.
, and
Brambley
,
M. R.
, 2005, “
Methods for Fault Detection, Diagnostics, and Prognostics for Building Systems—A Review, Part II
,”
HVAC&R Res.
,
11
(
2
), pp.
169
187
.
13.
Koh
,
J. I.
,
Bang
,
H. J.
,
Kim
,
C. G.
, and
Hong
,
C. S.
, 2005, “
Simultaneous Measurement of Strain and Damage Signal of Composite Structures Using a Fiber Bragg Grating Sensor
,”
Smart Mater. Struct.
0964-1726,
14
, pp.
658
663
.
14.
Yen
,
G. G.
, and
DeLima
,
P. G.
, 2005, “
Improving the Performance of Globalized Dual Heuristic Programming for Fault Tolerant Control Through an Online Learning Supervisor
,”
IEEE Trans. Autom. Sci. Eng.
,
2
(
2
), pp.
121
131
. 1545-5955
15.
Ganguli
,
R.
, 2002, “
Noise and Outlier Removal From Jet Engine Health Signals Using Weighted FIR Median Hybrid Filters
,”
Mech. Syst. Signal Process.
0888-3270,
16
(
6
), pp.
967
978
.
16.
Yeh
,
J. R.
,
Li
,
A. H.
,
Shieh
,
J. S.
,
Su
,
Y. A.
, and
Yang
,
C. Y.
, 2008, “
Diagnosing Dangerous Arrhythmia of Patients by Automatic Detecting of QRS Complexes in ECG
,”
Int. J. Biol. Med. Sci.
,
1
(
4
), pp.
175
181
.
17.
Blanes
,
F. J. G.
,
Alvarez
,
J. L. R.
,
Carrion
,
J. R.
,
Everss
,
E.
,
Ortega
,
J. H.
,
Atienza
,
F. A.
, and
Alberola
,
A. G.
, 2007, “
Denoising of Heart Rate Variability Signals Tilt Test Using Independent Component Analysis and Multidimensional Recordings
,”
Comput. Cardiol.
0276-6574,
34
, pp.
399
402
.
18.
Lee
,
J. R.
, 2005, “
Spatial Resolution and Resolution in Phase-Shifting Laser Interferometry
,”
Meas. Sci. Technol.
0957-0233,
16
, pp.
2525
2533
.
19.
Mba
,
D.
, 2003, “
Acoustic Emissions and Monitoring Bearing Health
,”
Tribol. Trans.
1040-2004,
46
(
3
), pp.
447
451
.
20.
Yoshida
,
I.
, 2002, “
Health Monitoring Algorithm by Monte Carlo Filter Based on Non-Gaussian Noise
,”
J. Nat. Disaster Sci.
0388-4090,
24
(
2
), pp.
101G
107G
.
21.
Arce
,
G. R.
, and
Paredes
,
J. L.
, 2000, “
Recursive Weighted Median Filter Admitting Negative Weights and Their Optimization
,”
IEEE Trans. Signal Process.
1053-587X,
483
, pp.
768
779
.
22.
Roy
,
N.
, and
Ganguli
,
R.
, 2006, “
Filter Design Using Radial Basis Function Neural Network and Genetic Algorithm for Improved Operational Health Monitoring
,”
Appl. Soft Comput.
1568-4946,
6
(
2
), pp.
154
169
.
23.
Jafarizadeh
,
M. A.
,
Hassannejad
,
R.
,
Ettefagh
,
M. M.
, and
Chitsaz
,
S.
, 2008, “
Asynchrounous Input Gear Damage Diagnosis Using Time Averaging and Wavelet Filtering
,”
Mech. Syst. Signal Process.
0888-3270,
22
(
1
), pp.
172
201
.
24.
Xu
,
Q.
, and
Li
,
Z.
, 2007, “
Recognition of Wear Mode Using Multi-Variable Synthesis Approach Based on Wavelet Packet and Improved Three Line Method
,”
Mech. Syst. Signal Process.
0888-3270,
21
(
8
), pp.
3146
3166
.
25.
Abbasion
,
S.
,
Rafsanjani
,
A.
,
Farshidianfar
,
A.
, and
Irani
,
N.
, 2007, “
Rolling Element Bearings Multi-Fault Classification Based on Wavelet Denoising and Support Vector Machine
,”
Mech. Syst. Signal Process.
0888-3270,
21
(
7
), pp.
2933
2945
.
26.
Peng
,
Z. K.
, and
Chu
,
F. L.
, 2004, “
Application of the Wavelet Transforms in Machine Condition Monitoring and Fault Detection Diagnostics: A Review With Bibliography
,”
Mech. Syst. Signal Process.
0888-3270,
18
(
2
), pp.
199
221
.
27.
Roy
,
N.
, and
Ganguli
,
R.
, 2005, “
Helicopter Rotor Blade Frequency Evolution With Damage Growth and Signal Processing
,”
J. Sound Vib.
0022-460X,
283
(
3–5
), pp.
821
851
.
28.
Verma
,
R.
, and
Ganguli
,
R.
, 2005, “
Denoising Jet Engine Gas Path Measurements Using Nonlinear Filters
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
10
(
4
), pp.
461
464
.
29.
Ganguli
,
R.
, and
Dan
,
B.
, 2004, “
Trend Shift Detection in jet Engine Gas Path Measurement Using Cascaded Recursive Median Filter With Gradient and Laplacian Edge Detector
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
(
1
), pp.
55
61
.
30.
Ogaji
,
S. O. T
,
Li
,
Y. G.
,
Sampath
,
S.
, and
Singh
,
R.
, 2003, “
Gas Path Fault Diagnosis of a Turbofan Engine From Transient Data Using Artificial Neural Networks
,” ASME Paper No. GT2003-38423.
31.
Surender
,
V. P.
, and
Ganguli
,
R.
, 2005, “
Adaptive Myriad Filter for Improved Gas Turbine Condition Monitoring Using Transient Data
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
127
(
2
), pp.
329
339
.
32.
Nelwamondo
,
F. V.
, and
Marwala
,
T.
, 2008, “
Techniques for Handling Missing Data: Applications to Online Condition Monitoring
,”
Int. J. Innovative Comput. Inf. Control
,
4
(
6
), pp.
1507
1526
.
33.
Kobayashi
,
T.
, and
Simon
,
D. L.
, 2005, “
Hybrid Neural-Network Genetic-Algorithm Technique for Aircraft Engine Performance Diagnostics
,”
J. Propul. Power
0748-4658,
21
(
4
), pp.
751
758
.
34.
Kobayashi
,
T.
, and
Simon
,
D. L.
, 2007, “
Integration of On-Line and Off-Line Diagnostic Algorithms for Aircraft Engine Health Management
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
(
4
), pp.
986
993
.
35.
Lu
,
P. J.
, and
Hsu
,
T. C.
, 2002, “
Application of Autoassociative Neural Network on Gas-Path Sensor Data Validation
,”
J. Propul. Power
0748-4658,
18
(
4
), pp.
879
888
.
36.
Suetake
,
N.
, and
Uchino
,
E.
, 2007, “
A RBFN-Weiner Hybrid Filter Using Higher Order Statistics
,”
Appl. Soft Comput.
1568-4946,
7
(
3
), pp.
915
922
.
37.
Demirci
,
S.
,
Haciyev
,
C.
, and
Schwenke
,
A.
, 2008, “
Fuzzy-Logic Based Automated Engine Health Monitoring for Commercial Aircraft
,”
Aircraft Engineering and Aerospace Technology
,
80
(
5
), pp.
516
525
.
38.
Kyriazis
,
A.
, and
Mathioudakis
,
K.
, 2008, “
Enhanced Fault Localization Using Probabilistic Fusion With Gas Path Analysis Algorithms
,”
Proceedings of the ASME Turbo Expo
, Vol.
2
, pp.
239
247
.
39.
Sekhon
,
R.
,
Bassily
,
H.
, and
Wagner
,
J.
, 2008, “
A Comparison of Two Trending Strategies for Gas Turbine Performance Prediction
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
130
(
4
), p.
041601
.
40.
Loboda
,
I.
,
Yepifanov
,
S.
, and
Feldshteyn
,
Y.
, 2007, “
A Generalized Fault Classification for Gas Turbine Diagnostics at Steady States and Transients
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
(
4
), pp.
977
985
.
You do not currently have access to this content.