Flame flashback driven by combustion induced vortex breakdown (CIVB) represents one of the most severe reliability problems of modern gas turbines with swirl stabilized combustors. Former experimental investigations of this topic with a 500 kW burner delivered a model for the prediction of the CIVB occurrence for moderate to high mass flow rates. This model is based on a time scale comparison. The characteristic time scales were chosen following the idea that quenching at the flame tip is the dominating effect preventing upstream flame propagation in the center of the vortex flow. Additional numerical investigations showed that the relative position of the flame regarding the recirculation zone influences the interaction of the flame and flow field. The recent analysis on turbulence and chemical reaction of data acquired with high speed measurement techniques applied during the CIVB driven flame propagation by the authors lead to the extension of the prediction model. As the corrugated flame regimes at the flame tip prevails at low to moderate mass flow rates, a more precise prediction in this range of mass flow rates is achieved using a characteristic burnout time τb1/Sl for the reactive volume. This paper presents first this new idea, confirms it then with numerical as well as experimental data, and extends finally the former model to a prediction tool that can be applied in the full mass flow range of swirl burners.

1.
Fritz
,
J.
,
Kröner
,
M.
, and
Sattelmayer
,
T.
, 2001, “
Flashback in a Swirl Burner With Cylindrical Premixing Zone
,”
Proceedings of the ASME Turbo Expo
, LA.
2.
Kröner
,
M.
,
Fritz
,
J.
, and
Sattelmayer
,
T.
, 2002, “
Flashback Limits for Combustion Induced Vortex Breakdown in a Swirl Burner
,”
Proceedings of the ASME Turbo Expo
, The Netherlands.
3.
Konle
,
M.
, and
Sattelmayer
,
T.
, 2008, “
Interaction of Heat Release and Vortex Breakdown in Swirling Flames
,”
Proceedings of the 14th International Symposium on Applications of Laser Techniques to Fluid Mechanics
, Portugal.
4.
Noble
,
D. R.
,
Zhang
,
Q.
,
Shareef
,
A.
,
Tootle
,
J.
,
Meyers
,
A.
, and
Lieuwen
,
T.
, 2006, “
Syngas Mixture Composition Effects Upon Flashback and Blowout
,”
Proceedings of the ASME Turbo Expo
, Spain.
5.
McCormack
,
P. D.
,
Scheller
,
K.
,
Mueller
,
G.
, and
Tisher
,
R.
, 1972, “
Flame Propagation in a Vortex Core
,”
Combust. Flame
0010-2180,
19
, pp.
297
303
.
6.
Asato
,
K.
,
Wada
,
H.
,
Hiruma
,
T.
, and
Takeuchi
,
Y.
, 1997, “
Characteristics of Flame Propagation in a Vortex Core: Validity of a Model for Flame Propagation
,”
Combust. Flame
0010-2180,
110
, pp.
418
428
.
7.
Umemura
,
A.
, and
Tomita
,
K.
, 2001, “
Rapid Flame Propagation in a Vortex Tube in Perspective of Vortex Breakdown Phenomena
,”
Combust. Flame
0010-2180,
125
, pp.
820
838
.
8.
Putnam
,
A. A.
, and
Jensen
,
R. A.
, 1948, “
Application of Dimensionless Numbers to Flashback and Other Combustion Phenomena
,”
Third International Symposium on Combustion, Flame and Explosion Phenomena
, pp.
89
98
.
9.
Abdel-Gayed
,
R. G.
, and
Bradley
,
D.
, 1985, “
Criteria for Turbulent Propagation Limits of Premixed Flames
,”
Combust. Flame
0010-2180,
62
, pp.
61
68
.
10.
Abdel-Gayed
,
R. G.
,
Bradley
,
D.
, and
Lung
,
F. K. K.
, 1989, “
Combustion Regimes and the Straining of Turbulent Premixed Flames
,”
Combust. Flame
0010-2180,
76
, pp.
213
218
.
11.
Kröner
,
M.
,
Sattelmayer
,
T.
,
Fritz
,
J.
,
Kiesewetter
,
F.
, and
Hirsch
,
C.
, 2007, “
Flame Propagation in Swirling Flows—Effect of Local Extinction on the Combustion Induced Vortex Breakdown
,”
Combust. Sci. Technol.
0010-2202,
179
, pp.
1385
1416
.
12.
Kiesewetter
,
F.
,
Konle
,
M.
, and
Sattelmayer
,
T.
, 2007, “
Analysis of Combustion Induced Vortex Breakdown Driven Flame Flashback in a Premix Burner With Cylindrical Mixing Zone
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
, pp.
929
936
.
13.
Konle
,
M.
,
Kiesewetter
,
F.
, and
Sattelmayer
,
T.
, 2008, “
Simultaneous High Repetition Rate PIV-LIF-Measurements of CIVB Driven Flashback
,”
Exp. Fluids
0723-4864,
44
, pp.
529
538
.
14.
Borghi
,
R.
, 1988, “
Turbulent Combustion Modelling
,”
Prog. Energy Combust. Sci.
0360-1285,
14
, pp.
245
292
.
15.
Darmofal
,
D. L.
, 1993, “
The Role of Vorticity Dynamics in Vortex Breakdown
,” AIAA Paper No. 93-3036.
16.
Hasegawa
,
T.
,
Nishiki
,
S.
, and
Michikami
,
S.
, 2001, “
Mechanism of Flame Propagation Along a Vortex Tube
,”
IUTAM Symposium on Geometry and Statistics of Turbulence
,
Kluwer
,
Dordrecht, The Netherlands
, pp.
235
240
.
17.
Panton
,
R. L.
, 1996,
Incompressible Flow
,
Wiley
,
New York
.
18.
Hoffmann
,
S.
,
Habisreuther
,
P.
, and
Lenze
,
B.
, 1994, “
Development and Assessment of Correlations for Predicting Stability Limits of Swirling Flames
,”
Chem. Eng. Process.
0255-2701,
33
, pp.
393
400
.
19.
Turns
,
S. R.
, 2000,
An Introduction to Combustion
, 2nd ed.,
McGraw-Hill
,
New York
.
20.
Peters
,
N.
, 1994, “
Turbulente Brenngeschwindigkeit
,” Abschlussbericht zum Forschungsvorhaben, Report No. Pe 241/9-2.
21.
Damköhler
,
G.
, 1940, “
Der Einfluss der Turbulenz auf die Flammengeschwindigkeit in Gasgemischen
,”
Z. Elektrochem. Angew. Phys. Chem.
0372-8323,
46
, pp.
601
626
.
22.
Burmberger
,
S.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
, 2006, “
Designing a Radial Swirler Vortex Breakdown Burner
,”
Proceedings of the ASME Turbo Expo
, Spain.
23.
Eckbreth
,
A. C.
, 1996, “
Laser Diagnostics for Common Combustion Temperature and Species
,”
Combustion Science and Technology Book Series
, Vol.
3
,
Taylor & Francis
,
London
.
24.
Konle
,
M.
,
Winkler
,
A.
,
Kiesewetter
,
F.
,
Wäsle
,
J.
, and
Sattelmayer
,
T.
, 2006, “
CIVB Flashback Analysis With Simultaneous and Time Resolved PIV-LIF Measurements
,”
Proceedings of the 13th International Symposium on Applications of Laser Techniques to Fluid Mechanics
, Portugal.
You do not currently have access to this content.