A novel combustor design, referred to as a stagnation-point reverse-flow (SPRF) combustor, was recently developed to overcome the stability issues encountered with most lean premixed combustion systems. The SPRF combustor is able to operate stably at very lean fuel-air mixtures with low NOx emissions. The reverse flow configuration causes the flow to stagnate and hot products to reverse and leave the combustor. The highly turbulent stagnation zone and internal recirculation of hot product gases facilitates robust flame stabilization in the SPRF combustor at very lean conditions over a range of loadings. Various optical diagnostic techniques are employed to investigate the flame characteristics of a SPRF combustor operating with premixed natural gas and air at atmospheric pressure. These include simultaneous planar laser-induced fluorescence imaging of OH radicals and chemiluminescence imaging, and spontaneous Raman scattering. The results indicate that the combustor has two stabilization regions, with the primary region downstream of the injector where there are low average velocities and high turbulence levels where most of the heat release occurs. High turbulence levels in the shear layer lead to increased product recirculation levels, elevating the reaction rates and thereby enhancing the combustor stability. The effect of product entrainment on the chemical time scales and the flame structure is quantified using simple reactor models. Turbulent flame structure analysis indicates that the flame is primarily in the thin reaction zone regime throughout the combustor. The flame tends to become more flameletlike, however, for increasing distance from the injector.

1.
Gupta
,
A. K.
,
Bolz
,
S.
, and
Hasegawa
,
T.
, 1999, “
Effect of Air Preheat and Oxygen Concentration on Flame Structure and Emission
,”
ASME J. Energy Resour. Technol.
0195-0738,
121
, pp.
209
216
.
2.
Gupta
,
A. K.
, 2000, “
Flame Characteristics with High Temperature Air Combustion
,” Paper No. AIAA-2000–0593.
3.
Lefebvre
,
A.
, 1983,
Gas Turbine Combustion
,
McGraw-Hill
,
New York
.
4.
Wunning
,
J. G.
, 2000, “
Flameless Combustion in Thermal Process Technology
,” Second International Seminar on High Temperature Combustion,
Stockholm, Sweden
.
5.
Plessing
,
T.
,
Peters
,
N.
, and
Wünning
,
J. G.
, 1998, “
Laser Optical Investigation of Highly Preheated Combustion With Strong Exhaust Gas Recirculation
,”
27th Symposium (International) on Combustion
, The Combustion Institute, pp.
3197
3204
.
6.
Neumeier
,
Y.
,
Weksler
,
Y.
,
Zinn
,
B. T.
,
Seitzman
,
J. M.
,
Jagoda
,
J.
, and
Kenny
,
J.
, 2005, “
Ultra Low Emissions Combustor With Non-Premixed Reactants Injection
,” Paper No. AIAA 2005–3775.
7.
Seitzman
,
J. M.
, and
Hanson
,
R. K.
, 1993, “
Planar Fluorescence Imaging in Gases
,”
Instrumentation for Flows With Combustion
,
A. M. K. P.
Taylor
, ed.,
Academic
,
London
.
8.
Nooren
,
P. A.
,
Versluis
,
M.
,
van der Meer
,
T. H.
,
Barlow
,
R. S.
, and
Frank
,
J. H.
, 2000, “
Raman-Rayleigh-LIF Measurements of Temperature and Species Concentrations in the Delft Piloted Turbulent Jet Diffusion Flame
,”
Appl. Phys. B: Lasers Opt.
0946-2171,
71
, pp.
95
111
.
9.
Gopalakrishnan
,
P.
,
Bobba
,
M. K.
, and
Seitzman
,
J.
, 2007, “
Controlling Mechanisms for Low NOx Emissions in a Non-Premixed Stagnation Point Reverse Flow Combustor
,”
Proc. Combust. Inst.
1540-7489,
31
, pp.
3401
3408
.
10.
Miles
,
P. C.
, 1999, “
Raman Line-Imaging for Spatially and Temporally Resolved Mole Fraction Measurements in Internal Combustion Engines
,”
Appl. Opt.
0003-6935,
38
, pp.
1714
1732
11.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
, Jr.
W. C.
,
Lissianski
,
V.
, and
Qin
,
Z.
, 1999, GRI-Mech Homepage, Gas Research Institute, Chicago, www.me.berkeley.edu/gri_mech/www.me.berkeley.edu/gri_mech/.
12.
Miller
,
J. A.
, and
Bowman
,
C. T.
, 1989, “
Mechanisms and Modeling of Nitrogen Chemistry in Combustion
,”
Prog. Energy Combust. Sci.
0360-1285,
15
, pp.
287
338
.
13.
Barnett
,
H. C.
, and
Hibbard
,
R. R.
, 1957, “
Basic Considerations in the Combustion of Hydrocarbon Fuels With Air
,” NACA Report No. 1300.
14.
Bobba
,
M. K.
,
Gopalakrishnan
,
P.
,
Seitzman
,
J. M.
, and
Zinn
,
B. T.
, 2006, “
Characteristics of Combustion Processes in a Stagnation Point Reverse Flow Combustor
,” ASME Paper No. GT2006–91217.
15.
Kalb
,
J. R.
, and
Sattelmayer
,
T.
, 2004, “
Lean Blowout Limit and NOx-Production of a Premixed Sub-PPM NOx Burner With Periodic Flue Gas Recirculation
,” ASME Paper No. GT 2004–53410.
16.
Christo
,
F. C.
, and
Dally
,
B. B.
, 2005, “
Modeling Turbulent Reacting Jets Issuing Into a Hot and Diluted Coflow
,”
Combust. Flame
0010-2180,
142
pp.
117
129
.
17.
Borghi
,
R.
, 1985,
Recent Advances in Aerospace Science
,
C.
Bruno
and
S.
Casci
, eds.
Plenum
,
New York
, p.
117
.
18.
Peters
,
N.
, 1999, “
The Turbulent Burning Velocity for Large-Scale and Small-Scale Turbulence
,”
J. Fluid Mech.
0022-1120,
384
, pp.
107
132
.
19.
Griebel
,
P.
,
Scharen
,
R.
,
Siewert
,
P.
,
Bombach
,
R.
,
Inauen
,
A.
, and
Kreutner
,
W.
, 2003, “
Flow Field And Structure Of Turbulent High-Pressure Premixed Methane/Air Flames
,” ASME Paper No. GT2003–38398.
You do not currently have access to this content.