The fundamentals and thermodynamic analysis of high-temperature air combustion (HiTAC) technology is presented. The HiTAC is characterized by high temperature of combustion air having low oxygen concentration. This study provides a theoretical analysis of HiTAC process from the thermodynamic point of view. The results demonstrate the possibilities of reducing thermodynamic irreversibility of combustion by considering an oxygen-deficient combustion process that utilizes both gas and heat recirculations. HiTAC conditions reduce irreversibility. Furthermore, combustion with the use of oxygen (in place of air) is also analyzed. The results showed that a system, which utilizes oxygen as an oxidizer, results in higher first and second law efficiencies as compared to the case with air as the oxidizer. The entropy generation for an adiabatic combustion process is reduced by more than 60% due to the effect of either preheating or oxygen enrichment. This study is aimed at providing technical guidance to further improve efficiency of a combustion process, which shows very small temperature increases due to mild chemical reactions.

1.
Tsuji
,
H.
,
Gupta
,
A.
,
Hasegawa
,
T.
,
Katsuki
,
M.
,
Kishimoto
,
K.
, and
Morita
,
M.
, 2003,
High Temperature Air Combustion; From Energy Conservation to Pollution Reduction
,
CRC
,
Boca Raton, FL
.
2.
Hasegawa
,
T.
,
Mochida
,
S.
, and
Gupta
,
A. K.
, 2002, “
Development of Advanced Industrial Furnace Using Highly Preheated Combustion Air
,”
J. Propul. Power
0748-4658,
18
(
2
),
233
239
.
3.
Gupta
,
A. K.
,
Bolz
,
S.
, and
Hasegawa
,
T.
, 1999, “
Effect of Air Preheat and Oxygen Concentration on Flame Structure and Emission
,”
ASME J. Energy Resour. Technol.
0195-0738,
121
, pp.
209
216
.
4.
Gupta
,
A. K.
, 2004, “
Thermal Characteristics of Gaseous Fuel Flames Using High Temperature Air
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
(
1
), pp.
9
19
.
5.
Mortberg
,
M.
,
Gupta
,
A. K.
, and
Blasiak
,
W.
, 2004, “
Flow Phenomena of Normal and Low Calorific Value Fuels in High Temperature Air Combustion Conditions
,”
AFRC∕JFRC Joint Fall Symposium
,
Maui, HI
, Oct. 10–14.
6.
Jangsawang
,
W.
,
Klimanek
,
A.
, and
Gupta
,
A. K.
, 2005, “
Experiments for Enhanced Yield of Hydrogen From Wastes Using High Temperature Steam Gasification
,”
24th International Conference on Incineration and Thermal Treatment Technologies (IT3)
,
Galveston, TX
, May 9–13;
see also
Jangsawang
,
W.
,
Klimanek
,
A.
, and
Gupta
,
A. K.
, 2006, “
Enhanced Yield of Hydrogen From Wastes Using High Temperature Steam Gasification
,”
ASME J. Energy Resour. Technol.
0195-0738,
128
(
3
), pp.
179
185
.
7.
Kalisz
,
S.
,
Abeyweera
,
R.
,
Szewczyk
,
D.
,
Jansson
,
A.
,
Lucas
,
C.
, and
Blasiak
,
W.
, 2004, “
Energy Balance of the High Temperature Air∕Steam Gasification of Biomass in Up-Draft Fixed Bed Type Gasifier
,”
23rd International Conference on Incineration and Thermal Treatment Technologies (IT3)
,
Phoenix, AZ
, May 10–14.
8.
Konishi
,
N.
,
Kitagawa
,
K.
,
Arai
,
N.
, and
Gupta
,
A. K.
, 2002, “
Two-Dimensional Spectroscopic Analysis of Spontaneous Emission From a Flame Using Highly Preheated Air Combustion
,”
J. Propul. Power
0748-4658,
18
(
1
), pp.
199
204
.
9.
Kitagawa
,
K.
,
Konishi
,
N.
,
Arai
,
N.
, and
Gupta
,
A. K.
, 2003, “
Temporally Resolved 2-D Spectroscopic Study on the Effect of Highly Preheated and Low Oxygen Concentration Air on Combustion
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
326
331
.
10.
Gupta
,
A. K.
, 2004, “
Flame Length and Ignition Delay During the Combustion of Acetylene in High Temperature Air (in Japanese)
,”
Industrial Heating Journal, JIFMA
,
41
(
5
), pp.
44
52
.
11.
Weinberg
,
F.
, 1971, “
Combustion Temperature
,”
Nature (London)
0028-0836,
233
, pp.
239
241
.
12.
Gupta
,
A. K.
, 2001, “
Technological Evolution, Challenges and Future Prospects for the Application of HiTAC to HiCOT
,”
Invited Lecture at the High Temperature Air Combustion Technology Symposium
,
Tokyo, Japan
, Oct. 11.
13.
Shimada
,
T.
,
Akiyama
,
T.
,
Fukushima
,
S.
,
Mitsui
,
K.
,
Jinno
,
M.
,
Kitagawa
,
K.
,
Arai
,
N.
, and
Gupta
,
A. K.
, 2005, “
Time Resolved Temperature Profiling of Flames With Highly Preheated∕Low Oxygen Concentration Air in an Industrial Size Furnace
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
127
(
3
), pp.
464
471
.
14.
Mortberg
,
M.
,
Blasiak
,
W.
, and
Gupta
,
A. K.
, 2006, “
Combustion of Low Calorific Value Fuels in High Temperature and Oxygen Deficient Environment
,”
Combust. Sci. Technol.
0010-2202,
178
, pp.
1345
1372
.
15.
Shimada
,
T.
,
Akiyama
,
T.
,
Fukushima
,
S.
,
Kitagawa
,
K.
,
Arai
,
N.
,
Konishi
,
N.
,
Itoh
,
S.
,
Terabayashi
,
T.
,
Ohkuboto
,
Y.
, and
Gupta
,
A. K.
, 2004, “
Spectroscopic Observation of Heavy Oil Luminous Flames in an Industrial Regenerative Furnace
,”
J. Propul. Power
0748-4658,
20
(
5
), pp.
919
926
.
16.
Konishi
,
N.
,
Kitagawa
,
K.
,
Arai
,
N.
, and
Gupta
,
A. K.
, 2002, “
Two-Dimensional Spectroscopic Analysis of Spontaneous Emission From a Flame Using Highly Preheated Air Combustion
,”
J. Propul. Power
0748-4658,
18
(
1
), pp.
199
204
.
17.
Krishnamurthy
,
N.
,
Blasiak
,
W.
, and
Lugnet
,
A.
, 2004, “
Development of High Temperature Air and Oxy-Fuel Combustion Technologies for Minimized CO2 and NOx Emission in Industrial Heating
,”
The Joint International Conference on Sustainable Energy and Environment (SEE)
,
Hua Hin, Thailand
, Dec. 1–3.
18.
Cavaliere
,
A.
, and
De Joannon
,
A.
, 2004, “
Mild Combustion
,”
Progress in Energy and Combustion Science
,
Elsevier
,
New York
, Vol.
30
, pp.
329
366
.
19.
Wünning
,
J. A.
, and
Wünning
,
J. G.
, 1997, “
Flameless Oxidation to Reduce Thermal NO-Formation
,”
Progress Energy and Combustion Science
,
Elsevier
,
New York
, Vol.
23
, pp.
81
94
.
20.
Rosen
,
M. A.
, 2002, “
Does Industry Embrace Exergy?
,”
Exergy
, an International Journal,
2
, pp.
221
223
.
21.
Szargut
,
J.
,
Morris
,
D.
, and
Steward
,
F.
, 1988, “
Exergy Analysis of Thermal, Chemical, and Metallurgical Processes
,”
Hemisphere
,
New York
.
22.
Kotas
,
T. J.
, 1995, “
The Exergy Methods of Thermal Plant Analysis
,”
Krieger Publishers
,
Melbourne, FL
.
23.
Daw
,
S.
,
Chakravarthy
,
K.
,
Conklin
,
J.
, and
Graves
,
R. A.
, 2004, “
Generic Concept for ‘Flameless’ Combustion With Higher Thermodynamic Availability
,”
Proceedings of the Joint International Combustion Symposium of the American and Japanese Flame Research Committee
,
Maui
Oct. 10–13.
24.
Van Wylen
,
G.
, and
Sonntag
,
R.
, 1991,
Fundamentals of Thermodynamics
, 3rd ed.,
Wiley
,
New York
.
25.
Morley
,
C.
, 2005, “
Chemical Equilibria in Perfect Gases
,” GASEQ V. 0.79 software, www.gaseq.co.ukwww.gaseq.co.uk
You do not currently have access to this content.