Shock-tube experiments and chemical kinetics modeling were performed to further understand the ignition and oxidation kinetics of lean methane-based fuel blends at gas turbine pressures. Such data are required because the likelihood of gas turbine engines operating on CH4-based fuel blends with significant (>10%) amounts of hydrogen, ethane, and other hydrocarbons is very high. Ignition delay times were obtained behind reflected shock waves for fuel mixtures consisting of CH4, CH4H2, CH4C2H6, and CH4C3H8 in ratios ranging from 90/10% to 60/40%. Lean fuel/air equivalence ratios (ϕ=0.5) were utilized, and the test pressures ranged from 0.54 to 30.0atm. The test temperatures were from 1090K to 2001K. Significant reductions in ignition delay time were seen with the fuel blends relative to the CH4-only mixtures at all conditions. However, the temperature dependence (i.e., activation energy) of the ignition times was little affected by the additives for the range of mixtures and temperatures of this study. In general, the activation energy of ignition for all mixtures except the CH4C3H8 one was smaller at temperatures below approximately1300K(27kcalmol) than at temperatures above this value (41kcalmol). A methane/hydrocarbon–oxidation chemical kinetics mechanism developed in a recent study was able to reproduce the high-pressure, fuel-lean data for the fuel/air mixtures. The results herein extend the ignition delay time database for lean methane blends to higher pressures (30atm) and lower temperatures (1100K) than considered previously and represent a major step toward understanding the oxidation chemistry of such mixtures at gas turbine pressures. Extrapolation of the results to gas turbine premixer conditions at temperatures less than 800K should be avoided however because the temperature dependence of the ignition time may change dramatically from that obtained herein.

1.
Lefebvre
,
A. H.
, 1999,
Gas Turbine Combustion
, 2nd ed.,
Taylor & Francis
, Philadelphia, PA.
2.
Spadaccini
,
L. J.
, and
Colket
,
M. B.
, III
, 1994, “
Ignition Delay Characteristics of Methane Fuels
,”
Prog. Energy Combust. Sci.
0360-1285,
20
, pp.
431
460
.
3.
Naber
,
J. D.
,
Siebers
,
D. L.
,
Di Julio
,
S. S.
, and
Westbrook
,
C. K.
, 1994, “
Effects of Natural Gas Composition on Ignition Delay Under Diesel Conditions
,”
Combust. Flame
0010-2180,
99
, pp.
192
200
.
4.
Flores
,
R. M.
,
Miyasato
,
M. M.
,
McDonell
,
V. G.
, and
Samuelsen
,
G. S.
, 2001, “
Response of a Model Gas Turbine Combustor to Variation in Gaseous Fuel Composition
,”
J. Eng. Gas Turbines Power
0742-4795,
123
, pp.
824
831
.
5.
Flores
,
R. M.
,
McDonell
,
V. G.
, and
Samuelsen
,
G. S.
, 2003, “
Impact of Ethane and Propane Variation in Natural Gas on Performance of a Model Gas Turbine Combustor
,”
J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
701
708
.
6.
Tsuboi
,
T.
, and
Wagner
,
H. Gg.
, 1974, “
Homogeneous Thermal Oxidation of Methane in Reflected Shock Waves
,”
Proc. Combust. Inst.
1540-7489,
15
, pp.
883
890
.
7.
Petersen
,
E. L.
,
Röhrig
,
M.
,
Davidson
,
D. F.
,
Hanson
,
R. K.
, and
Bowman
,
C. T.
, 1996, “
High-Pressure Methane Oxidation Behind Reflected Shock Waves
,”
Proc. Combust. Inst.
1540-7489,
26
, pp.
799
806
.
8.
Petersen
,
E. L.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
, 1999, “
Ignition Delay Times of Ram Accelerator CH4∕O2/Diluent Mixtures
,”
J. Propul. Power
0748-4658,
15
, pp.
82
91
.
9.
Zhukov
,
V. P.
,
Sechenov
,
V. A.
, and
Starikovskii
,
A. Yu.
, 2003, “
Spontaneous Ignition of Methane-Air Mixtures in a Wide Range of Pressures
,”
Combust., Explos. Shock Waves
0010-5082,
30
, pp.
487
495
.
10.
Huang
,
J.
,
Hill
,
P. G.
,
Bushe
,
W. K.
, and
Munshi
,
S. R.
, 2004, “
Shock-Tube Study of Methane Ignition Under Engine-Relevant Conditions: Experiments and Modeling
,”
Combust. Flame
0010-2180,
136
, pp.
25
42
.
11.
Cheng
,
R. K.
, and
Oppenheim
,
A. K.
, 1984, “
Autoignition in Methane-Hydrogen Mixtures
,”
Combust. Flame
0010-2180,
58
, pp.
125
139
.
12.
Lifshitz
,
A.
,
Scheller
,
K.
,
Burcat
,
A.
, and
Skinner
,
G. B.
, 1971, “
Shock-Tube Investigation of Ignition in Methane-Oxygen-Argon Mixtures
,”
Combust. Flame
0010-2180,
16
, pp.
311
321
.
13.
Krishnan
,
K. S.
,
Ravikumar
,
R.
, and
Bhaskaran
,
K. A.
, 1983, “
Experimental and Analytical Studies on the Ignition of Methane-Acetylene Mixtures
,”
Combust. Flame
0010-2180,
49
, pp.
41
50
.
14.
Crossley
,
R. W.
,
Dorko
,
E. A.
,
Scheller
,
K.
, and
Burcat
,
A.
, 1972, “
The Effect of Higher Alkanes on the Ignition of Methane-Oxygen-Argon Mixtures in Shock Waves
,”
Combust. Flame
0010-2180,
19
, pp.
373
378
.
15.
Eubank
,
C. S.
,
Rabinowitz
,
M. J.
,
Gardiner
,
W. C.
Jr.
, and
Zellner
,
R. E.
, 1981, “
Shock-Initiated Ignition of Natural Gas-Air Mixtures
,”
Proc. Combust. Inst.
1540-7489,
18
, pp.
1767
1774
.
16.
Zellner
,
R.
,
Niemitz
,
K. J.
,
Warnatz
,
J.
,
Gardiner
,
W. C.
, Jr.
,
Eubank
,
C. S.
, and
Simmie
,
J. M.
, 1983, “
Hydrocarbon Induced Acceleration of Methane-Air Ignition
,”
Prog. Aeronaut. Astronaut.
,
88
, pp.
252
272
.
17.
Frenklach
,
M.
, and
Bornside
,
D. E.
, 1984, “
Shock-Initiated Ignition in Methane-Propane Mixtures
,”
Combust. Flame
0010-2180,
56
, pp.
1
27
.
18.
Higgin
,
R. M. R.
, and
Williams
,
A.
, 1969, “
A Shock-Tube Investigation of the Ignition of Lean Methane and n-Butane Mixtures With Oxygen
,”
Proc. Combust. Inst.
1540-7489,
12
, pp.
579
590
.
19.
Griffiths
,
J. F.
,
Coppersthwaite
,
D.
,
Phillips
,
C. H.
,
Westbrook
,
C. K.
, and
Pitz
,
W. J.
, 1990, “
Auto-Ignition Temperatures of Binary Mixtures of Alkanes in a Closed Vessel: Comparisons Between Experimental Measurements and Numerical Predictions
,”
Proc. Combust. Inst.
1540-7489,
23
, pp.
1745
1752
.
20.
Naber
,
J. D.
,
Siebers
,
D. L.
,
Di Julio
,
S. S.
, and
Westbrook
,
C. K.
, 1994, “
Effects of Natural Gas Composition on Ignition Delay Under Diesel Conditions
,”
Combust. Flame
0010-2180,
99
, pp.
192
200
.
21.
Jones
,
H. R. N.
, and
Leng
,
J.
, 1994, “
The Effect of Hydrogen and Propane Addition on the Oxidation of a Natural Gas-Fired Pulsed Combustor
,”
Combust. Flame
0010-2180,
99
, pp.
404
412
.
22.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
, GRI-Mech 3.0, http://www.me.berkeley.edu/gri-mech/http://www.me.berkeley.edu/gri-mech/
23.
Li
,
S. C.
, and
Williams
,
F. A.
, 2002, “
Reaction Mechanisms for Methane Ignition
,”
J. Eng. Gas Turbines Power
0742-4795,
124
, pp.
471
480
.
24.
Petersen
,
E. L.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
, 1999, “
Kinetics Modeling of Shock-Induced Ignition in Low-Dilution CH4∕O2 Mixtures at High Pressures and Intermediate Temperatures
,”
Combust. Flame
0010-2180,
117
, pp.
272
290
.
25.
Westbrook
,
C. K.
, 1979, “
An Analytical Study of the Shock Tube Ignition of Mixtures of Methane and Ethane
,”
Combust. Sci. Technol.
0010-2202,
20
, pp.
5
17
.
26.
Westbrook
,
C. K.
, and
Pitz
,
W. J.
, 1983, “
Effects of Propane on Ignition of Methane-Ethane-Air Mixtures
,”
Combust. Sci. Technol.
0010-2202,
33
, pp.
315
319
.
27.
Gardiner
,
W. C.
Jr.
,
Lissianski
,
V. V.
, and
Zamanski
,
V. M.
, 1995, “
Reduced Chemical Reaction Mechanism of Shock-Initiated Ignition of Methane and Ethane Mixtures With Oxygen
,”
Shock Waves at Marseille II, Proceedings of the 19th International Symposium on Shock Waves
,
R.
Brun
, and
L. Z.
Dumitrescu
, (eds.),
Springer
, Berlin, pp.
155
160
.
28.
Khalil
,
E. B.
, and
Karim
,
G. A.
, 2002, “
A Kinetic Investigation of the Role of Changes in the Composition of Natural Gas in Engine Applications
,”
J. Eng. Gas Turbines Power
0742-4795,
124
, pp.
404
411
.
29.
Kalitan
,
D. M.
,
Hall
,
J. M.
, and
Petersen
,
E. L.
, 2005, “
Ignition and Oxidation of Ethylene-Oxygen-Diluent Mixtures With and Without Silane Addition
,”
J. Propul. Power
0748-4658,
21
, pp.
1045
1056
.
30.
Petersen
,
E. L.
,
Rickard
,
M. J. A.
,
Crofton
,
M. D.
,
Abbey
,
E. D.
,
Traum
,
M. J.
, and
Kalitan
,
D. M.
, 2005, “
A Facility for Gas- and Condensed-Phase Measurements Behind Shock Waves
,”
Meas. Sci. Technol.
0957-0233,
16
, pp.
1716
1729
.
31.
Hall
,
J. M.
,
Rickard
,
M. J. A.
, and
Petersen
,
E. L.
, 2005, “
Comparison of Characteristic Time Diagnostics for Ignition and Oxidation of Fuel/Oxidizer Mixtures Behind Reflected Shock Waves
,”
Combust. Sci. Technol.
0010-2202,
177
, pp.
455
483
.
32.
Petersen
,
E. L.
,
Kalitan
,
D. M.
,
Simmons
,
S. L.
,
Bourque
,
G.
,
Curran
,
H. J.
, and
Simmie
,
J. M.
, 2007, “
Methane/Propane Oxidation at High Pressures: Experimental and Detailed Chemical Kinetic Modeling
,”
Proc. Combust. Inst.
1540-7489,
31
, pp.
447
454
.
33.
Kee
,
R. J.
,
Rupley
,
F. M.
,
Miller
,
J. A.
,
Coltrin
,
M. E.
,
Grcar
,
J. F.
,
Meeks
,
E.
,
Moffat
,
H. K.
,
Lutz
,
A. E.
,
Dixon-Lewis
,
G.
,
Smooke
,
M. D.
,
Warnatz
,
J.
,
Evans
,
G. H.
,
Larson
,
R. S.
,
Mitchell
,
R. E.
,
Petzold
,
L. R.
,
Reynolds
,
W. C.
,
Caracotsios
,
M.
,
Stewart
,
W. E.
,
Glarborg
,
P.
,
Wang
,
C.
, and
Adigun
,
O.
, 2004, Chemkin Collection, Release 4.0, Reaction Design, Inc., San Diego, CA.
34.
de Vries
,
J.
,
Hall
,
J. M.
,
Simmons
,
S. L.
,
Rickard
,
M. J. A.
,
Kalitan
,
D. M.
, and
Petersen
,
E. L.
, 2007, “
Ethane Ignition and Oxidation Behind Reflected Shock Waves
,”
Combust. Flame
0010-2180, in press.
35.
Petersen
,
E. L.
, and
de Vries
,
J.
, 2005, “
Measuring the Ignition of Fuel Blends Using a Design of Experiments Approach
,” AIAA Paper No. 2005-1165.
36.
de Vries
,
J.
, and
Petersen
,
E. L.
, 2005, “
Design and Validation of a Reduced Test Matrix for the Autoignition of Gas Turbine Fuel Blends
,” ASME Paper No. IMECE2005-80040.
37.
de Vries
,
J.
, and
Petersen
,
E. L.
, 2007, “
Autoignition of Methane-Based Fuel Blends Under Gas Turbine Conditions
,”
Proc. Combust. Inst.
1540-7489,
31
, pp.
3163
3171
.
You do not currently have access to this content.