A novel method for transient rotor/active magnetic bearing control using sampled wavelet coefficients is proposed. Control currents are formulated in the wavelet transform domain, prior to signal reconstruction. The wavelet based controller is designed from target transient responses due to step changes in wavelet coefficients of applied forces. Transient system dynamics are embedded in the controller and evaluated from on-line system identification. Experimental validation is undertaken using a flexible rotor/active magnetic bearing system. Mass loss tests were performed at two critical speeds corresponding to near sudden changes in unbalance that are capable of exciting rotor dynamic modes in a transient manner. The controller is shown to suppress the transient responses within a finite settling time.

1.
Keogh
,
P. S.
,
Mu
,
C.
, and
Burrows
,
C. R.
, 1995, “
Optimised Design of Vibration Controllers for Steady State and Transient Excitation of Flexible Rotors
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062
209
(
3
), pp.
155
168
.
2.
Nonami
,
K.
, and
Ito
,
T.
, 1994, “
μ-Synthesis of Flexible Rotor Magnetic Bearing Systems
,”
Proc. of 4th International Symposium on Magnetic Bearings
, p.
73
78
.
3.
Burrows
,
C. R.
, and
Sahinkaya
,
M. N.
, 1983, “
Vibration Control of Multi-Mode Rotor-Bearing Systems
,”
Proceedings of the Royal Society, London
,
386
(
1790
), pp.
77
94
.
4.
Burrows
,
C. R.
,
Sahinkaya
,
M. N.
, and
Clements
,
S.
, 1989, “
Active Vibration Control of Flexible Rotors: An Experimental and Theoretical Study
,”
Proceedings of the Royal Society, London
,
422
(
1862
), pp.
123
146
.
5.
Knospe
,
C. R.
,
Hope
,
R. W.
,
Fedigan
,
S. J.
, and
Williams
,
R. D.
, 1995, “
Experiments in the Control of Unbalance Response Using Magnetic Bearings
,”
Mechatronics
0957-4158,
5
(
4
), pp.
385
400
.
6.
Knospe
,
C. R.
,
Fedigan
,
S. J.
,
Hope
,
R. W.
, and
Williams
,
R. D.
, 1997, “
A Multitasking DSP Implementation of Adaptive Magnetic Bearing Control
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
5
(
2
), pp.
230
238
.
7.
Knospe
,
C. R.
,
Tamer
,
S. M.
, and
Lindlau
,
J.
, 1997, “
New Results in Adaptive Vibration Control
,”
Proc., 1997 Industrial Conference and Exhibition on Magnetic Bearings
, pp.
209
219
.
8.
Shafai
,
B.
,
Beale
,
S.
,
LaRocca
,
P.
, and
Cussons
,
E.
, 1994, “
Magnetic Bearing Control Systems and Adaptive Forced Balancing
,”
IEEE Control Syst. Mag.
0272-1708,
14
(
2
), pp.
4
13
.
9.
Zimmerman
,
D. C.
,
Inman
,
D. J.
, and
Juang
,
J. N.
, 1991, “
Vibration Suppression Using a Constrained Rate-Feedback-Threshold Strategy
,”
ASME J. Vibr. Acoust.
0739-3717,
113
(
3
), pp.
345
353
.
10.
Cole
,
M. O. T.
,
Keogh
,
P. S.
, and
Burrows
,
C. R.
, 2002, “
Control of Multifrequency Rotor Vibration Components
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
216
(
2
), pp.
165
177
.
11.
Keogh
,
P. S.
,
Cole
,
M. O. T.
, and
Burrows
,
C. R.
, 2002, “
Multi-State Transient Rotor Vibration Control Using Sampled Harmonics
,”
ASME J. Vibr. Acoust.
0739-3717,
124
(
2
), pp.
186
197
.
12.
Chancey
,
V. C.
, and
Flowers
,
G. T.
, 2001, “
Identification of Transient Vibration Characteristics Using Absolute Harmonic Wavelet Coefficients
,”
J. Vib. Control
1077-5463,
7
(
8
), pp.
1175
1193
.
13.
Newland
,
D. E.
, 1994, “
Wavelet Analysis of Vibration, Part 1: Theory
,”
ASME J. Vibr. Acoust.
0739-3717,
116
(
4
), pp.
409
416
.
14.
Newland
,
D. E.
, 1994, “
Wavelet Analysis of Vibration, Part 2: Wavelet Maps
,”
ASME J. Vibr. Acoust.
0739-3717,
116
(
4
), pp.
417
425
.
15.
Strang
,
G.
, and
Nguyen
,
T.
, 1996,
Wavelets and Filter Banks
,
Wellsey-Cambridge Press
.
16.
Vetterli
,
M.
, and
Kovačević
, 1995,
Wavelets and Subband Coding
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.