A high-speed video camera was combined with a newly developed optical system to measure time resolved two-dimensional (2D) temperature distribution in flames. This diagnostics has been applied to measure the temperature distribution in an industrial size regenerative test furnace facility using highly preheated combustion air and heavy fuel oil. The 2D distributions of continuum emission from soot particles in these flames have been simultaneously measured at two discrete wave bands at 125 frames/sec. This allowed us to determine the temperature from each image on the basis of two-color 2D thermometry, in which the ratio of the 2D emission intensity distribution at various spatial position in the flame was converted into the respective 2D temperature distribution with much higher spatial resolution as compared to that obtainable with thermocouples. This diagnostic method was applied to both premixed and diffusion flames with highly preheated low oxygen concentration combustion air using heavy fuel oil. The results show that higher temperature regions exist continuously in the premixed flame as compared to the diffusion flame. This provided clear indication of higher NO emission from the premixed flame as compared to diffusion flames during the combustion of heavy fuel oil under high-temperature air combustion conditions. This observation is contrary to that obtained with normal temperature combustion air wherein diffusion flames result in higher NOx emission levels.

1.
Tsuji
,
H.
,
Gupta
,
A. K.
,
Hasegawa
,
T.
,
Katsuki
,
K.
,
Kishimoto
,
K.
, and
Morita
,
M.
, 2003,
High Temperature Air Combustion—From Energy Conservation to Pollution Reduction
,
CRC Press
, Boca Raton, FL.
2.
NEDO Organization, 2000, “
NEDO Project Reports, High Performance Industrial Furnace Development Project—High Temperature Air Combustion
,” Tokyo, Japan, March 21, p.
1
.
3.
NKK Corporation, 1999, “
NKK Technical Review No. 80, July 1999, New Energy and Industrial Technology Development
,” Tokyo, Japan, pp.
1
45
.
4.
Ishiguro
,
T.
,
Tsuge
,
S.
,
Furuhata
,
T.
,
Kitagawa
,
K.
,
Arai
,
N.
,
Hasegawa
,
T.
,
Tanaka
,
R.
, and
Gupta
,
A. K.
, 1999,
Proc. Twenty-Seventh Symposium (International) on Combustion, The Combustion Institute
,
Pittsburgh, PA
, pp.
3205
3213
.
5.
Gupta
,
A. K.
, 2004, “
Thermal Characteristics of Gaseous Fuel Flames using High Temperature Air
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
(
1
), pp.
9
19
.
6.
Hino
,
Y.
,
Sugiyama
,
S.
,
Suzukawa
,
Y.
,
Mori
,
I.
,
Konishi
,
N.
,
Ishiguro
,
T.
,
Kitagawa
,
K.
,
Arai
,
N.
, and
Gupta
,
A. K.
, 2004, “
2-Dimensional Spectroscopic Observation of Non-luminous Flames in an Regenerative Industrial Furnace using Coal Gas
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
(
1
), pp.
20
27
.
7.
Shimada
,
T.
,
Akiyama
,
T.
,
Fukushima
,
S.
,
Kitagawa
,
K.
,
Arai
,
N.
,
Ohkubo
,
Y.
, and
Gupta
,
A. K.
, 2004, “
Spectroscopic Observation of Heavy Oil Luminous Flames in an Industrial Regenerative Furnace
,”
J. Propul. Power
0748-4658,
20
(
5
), pp.
919
926
.
8.
Kitagawa
,
K.
,
Konishi
,
N.
,
Itoh
,
S.
,
Terabyashi
,
T.
,
Arai
,
N.
,
Shimada
,
T.
,
Akiyama
,
T.
,
Fukushima
,
S.
, and
Ohkubo
,
Y.
, 2002, “
Iron and Steel Institute of Japan (ISIJ) International, Supplement
,” Vol.
42
, Tokyo, Japan, pp.
140
144
.
9.
Kitagawa
,
K.
,
Konishi
,
N.
,
Arai
,
N.
, and
Gupta
,
A. K.
, 2003, “
Temporally Resolved 2-D Spectroscopic Study on the Effect of Highly Preheated and Low Oxygen Concentration Air on Combustion
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
326
331
.
10.
Tago
,
Y.
,
Akimoto
,
F.
,
Kitagawa
,
K.
,
Arai
,
N.
,
Hashimoto
,
M.
, and
Churchill
,
S. W.
, 2001, “
American Institute of Chemical Engineering (AIChE) Annual Meeting, Reno, NV
,” poster no. 228m.
11.
Gupta
,
A. K.
, and
Lilley
,
D. G.
, 1985,
Flowfield Modeling and Diagnostics
,
Abacus Press
, Tunbridge Wells, England.
12.
Hino
,
Y.
,
Sugiyama
,
S.
,
Suzukawa
,
Y.
,
Mori
,
I.
,
Konishi
,
N.
,
Ishiguro
,
T.
,
Kitagawa
,
K.
,
Arai
,
N.
, and
Gupta
,
A. K.
, 2004, “
2-Dimensional Spectroscopic Observation of Non-luminous Flames in an Regenerative Industrial Furnace using Coal Gas
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
(
1
), pp.
20
27
.
You do not currently have access to this content.