The nonlinear behavior of the hydrodynamic forces generated by squeeze film dampers makes dynamical analyses of rotor-bearing systems incorporating such devices a complex and often long task. When steady-state orbits are to be sought, approximate methods (e.g., harmonic balance method, trigonometric collocation method) can be used in order to save computation cost. However, numerical integration in the time domain cannot be avoided if one wishes to calculate transient responses, or to carry out more meticulous analyses concerning the effects of the damper nonlinear nature on the motion of the system. For finite length squeeze film dampers, neither the short nor the long bearing approximations can be suitably applied, and the fluid pressure field has to be estimated numerically, thus rendering rotordynamics predictions even longer and, for engineering purposes computationally prohibitive. To surmount this problem, the present paper proposes a straightforward procedure to derive polynomial expressions for the squeeze film damper (SFD) forces, for given damper geometry and boundary conditions. This is achieved by applying Chebyshev orthogonal polynomial fits over force data generated by numerically solving the two-dimensional pressure field governing equation. For both transient and steady-state calculations, the use of the SFD forces polynomial expressions is seen to be very efficient and precise.

1.
Chu
,
F.
, and
Holmes
,
R.
,
1998
, “
Efficient Computation on Nonlinear Responses of a Rotating Assembly Incorporating the Squeeze-Film Damper
,”
Comput. Methods Appl. Mech. Eng.
,
164
, pp.
363
373
.
2.
Nataraj
,
C.
, and
Nelson
,
H. D.
,
1989
, “
Periodic Solutions in Rotor Dynamic Systems With Nonlinear Supports: A General Approach
,”
ASME J. Vibr. Acoust.
,
111
, pp.
187
193
.
3.
El-Shafei
,
A.
, and
Eranki
,
R. V.
,
1994
, “
Dynamic Analysis of Squeeze Film Damper Supported Rotors Using Equivalent Linearization
,”
ASME J. Eng. Gas Turbines Power
,
116
, pp.
682
691
.
4.
Zhao
,
J. Y.
,
Linnet
,
I. W.
, and
McLean
,
L. J.
,
1994
, “
Stability and Bifurcation of Unbalanced Response of a Squeeze Film Damped Flexible Rotor
,”
ASME J. Tribol.
,
116
, pp.
361
368
.
5.
Hahn
,
E. J.
, and
Chen
,
P. Y. P.
,
1994
, “
Harmonic Balance Analysis of General Squeeze Film Damped Multidegree-of-Freedom Rotor Bearing Systems
,”
ASME J. Tribol.
,
116
, pp.
499
507
.
6.
Shiau
,
T. N.
,
Hwang
,
J. L.
, and
Chang
,
Y. B.
,
1993
, “
A Study on Stability and Response Analysis of a Nonlinear Rotor System With Mass Unbalance and Side Load
,”
ASME J. Eng. Gas Turbines Power
,
115
, pp.
218
226
.
7.
Tichy
,
J. A.
,
1987
, “
A Study of the Effect of Fluid Inertia and End Leakage in the Finite Squeeze Film Damper
,”
ASME J. Tribol.
,
109
, pp.
54
59
.
8.
Jung
,
S. Y.
,
San Andre´s
,
L. A.
, and
Vance
,
J. M.
,
1991
, “
Measurements of Pressure Distributions and Force Coefficients in a Squeeze Film Damper Part II: Partially Sealed Configuration
,”
Tribol. Trans.
,
34
, pp.
383
388
.
9.
Rezvani
,
M. A.
, and
Hahn
,
E. J.
,
1993
, “
Limitations of the Short Bearing Approximation in Dynamically Loaded Narrow Hydrodynamic Bearing
,”
ASME J. Tribol.
,
115
, pp.
544
549
.
10.
O’Donoghue
,
J. P.
,
Koch
,
P. R.
, and
Hooke
,
C. O.
,
1969
–1970, “
Approximate Short Bearing Analysis and Experimental Results Obtained Using Plastic Bearing Liners
,”
Proc. Inst. Mech. Eng.
,
184, Pt. 3L
, pp.
190
196
.
11.
Rohde
,
S. M.
, and
Li
,
D. F.
,
1980
, “
A Generalized Short Bearing Theory
,”
J. Lubr. Technol.
,
102
, pp.
278
282
.
12.
Barret
,
L. E.
,
Allaire
,
P. E.
, and
Gunter
,
E. J.
,
1980
, “
A Finite Length Bearing Correction Factor for Short Bearing Theory
,”
J. Lubr. Technol.
,
102
, pp.
283
290
.
13.
Fuerst, A., Weber, H. I., and Brito, G. C., 1998, “Application and Remarks on the Finite Bearing Solution (FBS),” IFToMM Fifth International Conference on Rotor Dynamics, Darmstadt, pp. 560–570.
14.
Arauz
,
G. L.
, and
San Andre´s
,
L. A.
,
1993
, “
Experimental Pressures and Film Forces in a Squeeze Film Damper
,”
ASME J. Tribol.
,
115
, pp.
134
140
.
15.
Amendola, M., 1996, “Cavitation in Hydrodynamic Lubrication: A Parallel Algorithm for a Free-Boundary Problem,” PhD thesis, IMECC-Unicamp.
16.
Reinhardt
,
E.
, and
Lund
,
J. W.
,
1975
, “
The Influence of Fluid Inertia on the Dynamic Properties of Journal Bearings
,”
J. Lubr. Technol.
,
97
, pp.
159
167
.
17.
El-Shafei
,
A.
,
1991
, “
Unbalance Response of a Jeffcott Rotor Incorporating Long Squeeze Film Dampers
,”
ASME J. Vibr. Acoust.
,
113
, pp.
85
94
.
18.
Ramesh, K., and Kirk, G., 1999, “Nonlinear Response of Rotors Supported on Squeeze Film Dampers,”Proceedings of DETC99 17th Biennial ASME Vibrations Conference, Las Vegas, NV.
19.
Inayat-Hussain, J. I., Kanki, H., and Mureithi, N. W., 1999, “On The Effectiveness of Squeeze-Film Dampers for Vibration Attenuation in Rotating Machinery,” Proceedings of Inter-Noise 99, Fort Lauderdale, FL.
20.
Chu
,
F.
, and
Holmes
,
R.
,
2000
, “
The Damping Capacity of the Squeeze Film Damper in Suppressing Vibration of a Rotating Assembly
,”
Tribol. Int.
,
33
, pp.
81
97
.
21.
Szeri
,
A. Z.
,
Raimondi
,
A. A.
, and
Giron-Duarte
,
A.
,
1983
, “
Linear Force Coefficients for Squeeze-Film Dampers
,”
J. Lubr. Technol.
,
105
, pp.
326
334
.
22.
San Andres
,
L.
, and
Vance
,
J. M.
,
1987
, “
Effects of Fluid Inertia on Finite Length Squeeze-Film Dampers
,”
ASLE Trans.
,
30
, pp.
384
393
.
23.
Gohar, R., 1988, Elastohydrodynamics, (Ellis Horwood Series in Mechanical Engineering), Ellis Horwood, Chicester, UK.
24.
Cookson
,
R. A.
,
Feng
,
X. H.
, and
Kossa
,
S. S.
,
1983
, “
The Effect of Journal Misalignment on the Oil-Film Forces Generated in a Squeeze Film Damper
,”
ASME J. Eng. Gas Turbines Power
,
105
, pp.
560
564
.
25.
Zhang
,
S.
, and
Yan
,
L.
,
1991
, “
Development of an Efficient Oil Film Damper for Improving the Control of Rotor Vibration
,”
ASME J. Eng. Gas Turbines Power
,
113
, pp.
557
562
.
26.
Chamniprasart
,
K.
,
Al-Sharif
,
A.
,
Rajagopal
,
K. R.
, and
Szeri
,
A. Z.
,
1993
, “
Lubrication With Binary Mixtures: Bubbly Oil
,”
ASME J. Tribol.
,
115
, pp.
253
260
.
27.
Jaw-Ren
,
Lin
,
1998
, “
Squeeze Film Characteristics on Finite Journal Bearings: Couple Stress Fluid Model
,”
Tribol. Int.
,
31
,
201
207
.
28.
Worden, K., and Tomlinson, G. R., 1988, “Developments in Force State Mapping for Nonlinear Systems,”Proceedings, VI International Modal Analysis Conference, pp. 1471–1479.
29.
McLean
,
L. J.
, and
Hahn
,
E. J.
,
1983
, “
Unbalance Behavior of Squeeze Film Damped Multi-Mass Flexible Rotor Bearing Systems
,”
ASME J. Lubr. Technol.
,
105
, pp.
22
28
.
30.
Ren
,
Y.
, and
Beards
,
C. F.
,
1994
, “
A New Receptance-Based Perturbative Multi-Harmonic Balance Method for the Calculation of the Steady State Response of Non-Linear Systems
,”
J. Sound Vib.
,
172
, pp.
593
605
.
31.
Nayfeh, A. H., and Balachandran, B., 1995, Applied Nonlinear Dynamics, John Wiley and Sons, New York.
32.
Wang
,
J.
, and
Hahn
,
E. J.
,
1995
, “
Transient Analysis of Squeeze-Film Dampers With Oil Hole Feed
,”
Tribol. Trans.
,
38
, pp.
837
844
.
33.
Arauz
,
G. L.
, and
San Andre´s
,
L.
,
1994
, “
Effect of a Circumferential Feeding Groove on the Dynamic Force Response of a Short Squeeze Film Damper
,”
ASME J. Tribol.
,
116
, pp.
369
377
.
34.
Murty
,
K. G.
,
1974
, “
Note on a Bard-Type Scheme for Solving the Complementarity Problems
,”
Opsearch
,
11
, pp.
123
130
.
35.
Freund
,
N. O.
, and
Tieu
,
A. K.
,
1993
, “
A Thermo-Elasto-Hydrodynamic Study of Journal Bearing With Controlled Deflection
,”
ASME J. Tribol.
,
115
, pp.
550
556
.
You do not currently have access to this content.