The demand for increasing gas inlet temperatures in modern gas turbines up to 1500°C and above is the main reason for the need for more reliable thermal barrier coatings. New ceramics should provide higher phase stability and better resistance against chemical attack by pollutants in the combustion gas. Electron-beam physical vapor deposition (EB-PVD) processed, ZrO2-based TBCs were generated on bond-coated superalloy directionally solidified (DS) samples. Common yttria-stabilized zirconias of two different compositions, as well as novel stabilizers like CeO2 and La2O3, were investigated. A columnar structure was established during high-rate deposition in all cases. Diameter, degree of ordering of the columns, and phase composition depended on stabilizer oxide and content. The role of differences of vapor pressures is addressed with regard to chemical homogeneity of the coatings. The performance of the TBCs having various stabilizers was investigated in a cyclic oxidation furnace test and in a burner rig at Mach 0.3. The results were correlated to the type and content of stabilizer with special emphasis on phase analyses. Evaporation of new ceramic compositions necessitates special precautions because the vapor pressures of the components may differ too much. A new dual-source evaporation coater allows the production of these innovative TBCs with close control of chemistry. The potential of the equipment will be discussed.

1.
Rhys-Jones
T. N.
, and
Toriz
F. C.
, “
Thermal Barrier Coatings for Turbine Applications in Aero Engines
,”
High Temp. Technol.
, Vol.
7
, No.
2
,
1989
, pp.
73
81
.
2.
Demaray, R. E., Fairbanks, J. W., and Boone, D. H., “Physical Vapor Deposition of Ceramic Coatings for Gas Turbine Engine Components,” ASME Paper No. 82-GT-264, 1982.
3.
Meier
S. M.
, and
Gupta
D. K.
, “
The Evolution of Thermal Barrier Coatings in Gas Turbine Engine Applications
,”
ASME JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER
, Vol.
116
,
1994
, pp.
250
257
.
4.
Fritscher, K., Peters, M., Ra¨tzer-Scheibe, H.-J., and Schulz, U., “Superalloys and Coatings,” in: Advanced Aerospace Materials, H. Buhl, ed., Springer-Verlag Berlin-Heidelberg, 1992, pp. 84–107.
5.
Toriz, F. C., Thakker, A. B., and Gupta, S. K., “Thermal Barrier Coatings for Jet Engines,” ASME Paper No. 88-GT-279.
6.
Nagaraj
B. A.
, and
Wortmann
D. J.
, “
Burner Rig Evaluation of Ceramic Coatings With Vanadium-Contaminated Fuels
,”
ASME JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER
, Vol.
112
,
1990
, pp.
536
542
.
7.
Nagaraj, B. A., Maricocchi, A. F., Wortmann, D. J., Patton, J. S., and Clarke, R. L., “Hot Corrosion Resistance of Thermal Barrier Coatings,” ASME Paper No. 92-GT-44, 1992.
8.
Vincenzini, P., Appiano, G., Brossa, F., and Meriani, S., “Stability of Thermal Barrier Coatings,” Proc. 3th Int. Symp. Ceramic Materials and Components for Engines, Tennery, V. J., ed., 1989, pp. 201–210.
9.
Taylor
R.
,
Brandon
J. R.
, and
Morrell
P.
, “
Microstructure, Composition and Property Relationships of Plasma-Sprayed Thermal Barrier Coatings
,”
Surface and Coatings Technology
, Vol.
50
,
1992
, pp.
141
149
.
10.
Jones
R. L.
, and
Williams
C. E.
, “
Hot Corrosion Studies of Zirconia Ceramics
,”
Surface and Coatings Technology
, Vol.
32
,
1987
, pp.
349
358
.
11.
Siemers, P. A., and McKee, D. W., US Patent No. 4328 285, Apr. 5, 1982.
12.
Anderson, N. P., and Sheffler, K. D., “Development of Strain Tolerant Thermal Barrier Coating Systems,” NASA Contract NAS3-22548, report No. NASA-CR-168251, 1983.
13.
Stecura
S.
, “
New ZrO2–Yb2O3 Plasma-Sprayed Coatings for Thermal Barrier Applications
,”
Thin Solid Films
, Vol.
150
,
1987
, pp.
15
40
.
14.
Jones, R. L., and Reidy, R. F., “Development of Hot Corrosion Resistant Scandia-Stabilized Zirconia Thermal Barrier Coatings,” Proc. ASM/TMS Materials Week, 1994.
15.
Jones
R. L.
, “
The Development of Hot-Corrosion-Resistant Zirconia Thermal Barrier Coatings
,”
Materials at High Temperature
, Vol.
9
, No.
4
,
1991
, pp.
228
236
.
16.
Fritscher, K., and Bunk, W., “Density-Graded TBC’s Processed by EB-PVD,” 1st International Symposium on Functionally Gradient Material. Proc., Yamanouchi, M., et al., eds., Society of Non-Traditional Technology, 1990, Tokyo, Japan, pp. 91–96.
17.
Schulz
U.
,
Fritscher
K.
, and
Peters
M.
, “
EB-PVD Y2O3 and CeO2/Y2O3 Stabilized Zirconia Thermal Barrier Coatings—Crystal Habit and Phase Compositions
,”
Surface and Coatings Technology
, Vol.
82
,
1996
, pp.
259
269
.
18.
Schulz, U., and Fritscher, K., “Behavior of Subsurface-Modified EB-PVD Processed Thermal Barrier Coatings on Cyclic Tests,” in: Ceramic Coatings, K. Kokini, ed., ASME MD-Vol. 44, 1993, pp. 163–172.
19.
Thornton
J. A.
, “
Influence of Substrate Temperature and Deposition Rate on Structure of Thick Sputtered Cu Coatings
,”
J. Vac. Sci. Technol.
, Vol.
12
, No.
4
,
1975
, pp.
830
835
.
20.
Movchan
B. A.
, and
Demchishin
A. V.
,
Fiz. Met. Metalloved.
, Vol.
28
,
1969
, pp.
83
90
.
21.
Lelait
L.
,
Alperine
S.
, and
Diot
C.
, “
Microstructural Investigation of EBPVD Thermal Barrier Coatings
,”
Journal de Physique IV
, Colloque C9, Vol.
3
,
1993
, pp.
645
654
.
22.
Sohn, Y. H., Cho, K., Lee, E. Y., Biederman, R. R., and Sisson, R. D., Jr., “Phase Analysis of Physical Vapor Deposited ZrO2–8wt% Y2O3 Thermal Barrier Coatings,” in: Materials for Advanced Power Engineering—Part II, D. Coutsouradis et al., eds., Kluwer Academic Publishers, 1994, pp. 1345–1356.
23.
Schulz, U., “Wachstum, Mikrostruktur und Lebensdauer von elektronenstrahlaufgedampften Wa¨rmeda¨mmschicht-Systemen f¨r Turbinenschaufeln,” Shaker Verlag Aachen, 1995, ISBN 3-8265-0754.
24.
Fritscher, K., “U¨ber das EB PVD-Verfahren erzeugte, mehrfach gradierte Wa¨rmeda¨mmschichten,” Workshop Gradientenwerkstoffe 1993, W. A. Kaysser et al., eds., DLR Ko¨ln, 1993, pp. 6/1–4.
25.
Stecura, S., “Effects of Compositional Changes on the Performance of a Thermal Barrier Coating System,” NASA Technical Memorandum 78976, 1979.
26.
Miller
R. A.
, and
Berndt
C. C.
, “
Performance of Thermal Barrier Coatings in High Heat Flux Environments
,”
Thin Solid Films
, Vol.
119
,
1984
, pp.
195
202
.
27.
Singh
P.
,
Sainkar
S. R.
,
Kuber
M. V.
,
Gunjikar
V. G.
,
Shinde
R. F.
, and
Data
S. K.
, “
La-Stabilized Zirconia: Synthesis and Characterization
,”
Materials Letters
, Vol.
9
, No.
2/3
,
1990
, pp.
65
70
.
28.
Jacobson, N. S., “Thermodynamic Properties of Some Metal Oxide-Zirconia Systems,” NASA TM 102351, 1989, pp. 1–63.
This content is only available via PDF.
You do not currently have access to this content.