Turbulence measurements were performed on a 45 deg conical flame stabilizer with a 31 percent blockage ratio, mounted coaxially at the mouth of a circular pipe and supplied with a turbulent premixed methane-air mixture at a Reynolds number of 2.85 × 104. A two-component LDA system was used in the measurement of mean velocities, turbulence intensities, Reynolds stresses, skewness, and kurtosis. It was found that combustion accelerates mean-flow velocities but damps turbulence intensity via the processes of turbulent dilatation and viscous dissipation due to heat release. Measurements in the axial direction showed that the length of the recirculation zone was nearly doubled as a result of combustion. Also, the region around the downstream stagnation point where streamlines meet and velocities change direction was found to be highly turbulent. Skewness and kurtosis data indicated that large-scale eddies carrying fresh combustible mixture are entrained into the high-shear region surrounding the recirculation zone. Finally, a discussion of turbulence-combustion interaction is presented to explain these experimental results.

This content is only available via PDF.
You do not currently have access to this content.