Heavy-duty gas turbine combustion systems have a “reverse flow” combustion-cooling air network. High-temperature gradients have been observed in some combustion liners around the plain holes, or around the cylindrical inserts welded into the mixing holes. Flow visualization tests were performed in a countercurrent flow facility. Measurements of pressure and velocity distributions in and around the mixing hole jet were taken, and mass flow rates and discharge coefficients were calculated in order to characterize and compare the two geometries. The results with a plain hole (square-edged orifice) and the cylindrical insert show the presence of a sharp separation region at the trailing edge (combustion side) of the liner hole, which may cause the high-temperature gradients observed under operating conditions. The measured discharge coefficients show a dependence on the insert geometry, the flow parameter (K), and the bottom section (combustion side) countercurrent flow velocity.

This content is only available via PDF.
You do not currently have access to this content.