Abstract

Spanwise heterogeneity in surface roughness generates secondary mean flows in a rough-wall turbulent boundary layer. This study investigates the influence of roughness spanwise wavelength on the arrangement of these secondary flows using direct numerical simulation (DNS). We systematically vary the spanwise wavelength, S/δ, from π/16 to 2π, while maintaining constant roughness height and surface coverage density. Here, S represents the roughness spanwise wavelength, and δ denotes the outer length scale, which in this case is the half-channel height. Secondary flows are observed in all DNS cases, but their configurations depend on the spanwise wavelength. Specifically, small wavelengths result in low-momentum pathways (LMPs) above the roughness elements, whereas large wavelengths lead to high-momentum pathways (HMPs) at these locations. To elucidate the mechanisms behind this rearrangement, we analyze the mean streamwise vorticity transport equation. The findings indicate that shear stress anisotropy induces another pair of secondary vortices above the roughness elements as the spanwise wavelength increases. Given that secondary flows are features of the mean flow, we further examine the budgets of the dispersive kinetic energy (DKE). The analyses reveal that at small spanwise wavelengths, shear production primarily generates DKE, while at large wavelengths, wake production becomes the dominant energy source. Building on these insights, we propose a refined classification for surfaces with spanwise heterogeneity.

References

1.
Flack
,
K. A.
, and
Schultz
,
M. P.
,
2010
, “
Review of Hydraulic Roughness Scales in the Fully Rough Regime
,”
ASME J. Fluids Eng.
,
132
(
4
), p.
041203
.10.1115/1.4001492
2.
Chung
,
D.
,
Hutchins
,
N.
,
Schultz
,
M. P.
, and
Flack
,
K. A.
,
2021
, “
Predicting the Drag of Rough Surfaces
,”
Annu. Rev. Fluid Mech.
,
53
(
1
), pp.
439
471
.10.1146/annurev-fluid-062520-115127
3.
Zhang
,
W.
,
Yang
,
X.
, and
Kunz
,
R. F.
,
2023
, “
In Search of a Universal Rough Wall Model
,”
ASME J. Fluids Eng.
,
145
(
10
), p.
101302
.10.1115/1.4062820
4.
Schultz
,
M. P.
,
2007
, “
Effects of Coating Roughness and Biofouling on Ship Resistance and Powering
,”
Biofouling
,
23
(
5
), pp.
331
341
.10.1080/08927010701461974
5.
Monty
,
J.
,
Dogan
,
E.
,
Hanson
,
R.
,
Scardino
,
A.
,
Ganapathisubramani
,
B.
, and
Hutchins
,
N.
,
2016
, “
An Assessment of the Ship Drag Penalty Arising From Light Calcareous Tubeworm Fouling
,”
Biofouling
,
32
(
4
), pp.
451
464
.10.1080/08927014.2016.1148140
6.
Lynch
,
F. T.
, and
Khodadoust
,
A.
,
2001
, “
Effects of Ice Accretions on Aircraft Aerodynamics
,”
Prog. Aerosp. Sci.
,
37
(
8
), pp.
669
767
.10.1016/S0376-0421(01)00018-5
7.
Cao
,
Y.
,
Tan
,
W.
, and
Wu
,
Z.
,
2018
, “
Aircraft Icing: An Ongoing Threat to Aviation Safety
,”
Aerosp. Sci. Technol.
,
75
, pp.
353
385
.10.1016/j.ast.2017.12.028
8.
Jafari
,
M.
,
Mansoori
,
Z.
,
Avval
,
M. S.
, and
Ahmadi
,
G.
,
2015
, “
The Effects of Wall Roughness on Erosion Rate in Gas–Solid Turbulent Annular Pipe Flow
,”
Powder Technol.
,
271
, pp.
248
254
.10.1016/j.powtec.2014.11.024
9.
Bradshaw
,
P.
,
1987
, “
Turbulent Secondary Flows
,”
Annu. Rev. Fluid Mech.
,
19
(
1
), pp.
53
74
.10.1146/annurev.fl.19.010187.000413
10.
Boldt
,
R.
,
McClain
,
S. T.
, and
Kunz
,
R. F.
,
2024
, “
Flow Through a Passage With Scaled Additive Manufacturing Roughness Representing Different Printing Orientations
,”
ASME J. Fluids Eng.
, 146(12), p. 121203.10.1115/1.4065765
11.
Barros
,
J. M.
, and
Christensen
,
K. T.
,
2014
, “
Observations of Turbulent Secondary Flows in a Rough-Wall Boundary Layer
,”
J. Fluid Mech.
,
748
, p.
R1
.10.1017/jfm.2014.218
12.
Sotomayor-Zakharov
,
D.
,
Radenac
,
E.
,
Gallia
,
M.
,
Guardone
,
A.
, and
Knop
,
I.
,
2024
, “
Statistical Analysis of the Surface Roughness on Aircraft Icing
,”
J. Aircr.
,
61
(
1
), pp.
245
256
.10.2514/1.C037403
13.
Vanderwel
,
C.
, and
Ganapathisubramani
,
B.
,
2015
, “
Effects of Spanwise Spacing on Large-Scale Secondary Flows in Rough-Wall Turbulent Boundary Layers
,”
J. Fluid Mech.
,
774
, p.
R2
.10.1017/jfm.2015.292
14.
Ancrum
,
D. B.
, and
Yaras
,
M. I.
,
2017
, “
Measurements of the Effects of Streamwise Riblets on Boundary Layer Turbulence
,”
ASME J. Fluids Eng.
,
139
(
11
), p.
111203
.10.1115/1.4037044
15.
Long
,
Y.
,
Wang
,
J.
, and
Pan
,
C.
,
2023
, “
The Influence of Roughness-Element-Spacing on Turbulent Entrainment Over Spanwise Heterogeneous Roughness
,”
Phys. Fluids
,
35
(
8
), p.
085127
.10.1063/5.0158984
16.
Frohnapfel
,
B.
,
von Deyn
,
L.
,
Yang
,
J.
,
Neuhauser
,
J.
,
Stroh
,
A.
,
Örlü
,
R.
, and
Gatti
,
D.
,
2024
, “
Flow Resistance Over Heterogeneous Roughness Made of Spanwise-Alternating Sandpaper Strips
,”
J. Fluid Mech.
,
980
, p.
A31
.10.1017/jfm.2024.40
17.
Han
,
Y.
, and
Palacios
,
J.
,
2017
, “
Surface Roughness and Heat Transfer Improved Predictions for Aircraft Ice-Accretion Modeling
,”
AIAA J.
,
55
(
4
), pp.
1318
1331
.10.2514/1.J055217
18.
McClain
,
S. T.
,
Vargas
,
M. M.
,
Tsao
,
J.-C.
, and
Broeren
,
A. P.
,
2018
, “
Ice Roughness and Thickness Evolution on a Business Jet Airfoil
,”
AIAA
Paper No. 2018-3014.10.2514/6.2018-3014
19.
McClain
,
S. T.
,
Hanson
,
D. R.
,
Cinnamon
,
E.
,
Snyder
,
J. C.
,
Kunz
,
R. F.
, and
Thole
,
K. A.
,
2021
, “
Flow in a Simulated Turbine Blade Cooling Channel With Spatially Varying Roughness Caused by Additive Manufacturing Orientation
,”
ASME J. Turbomach.
,
143
(
7
), p.
071013
.10.1115/1.4050389
20.
Altland
,
S.
,
Zhu
,
X.
,
McClain
,
S.
,
Kunz
,
R.
, and
Yang
,
X.
,
2022
, “
Flow in Additively Manufactured Super-Rough Channels
,”
Flow
,
2
, p.
E19
.10.1017/flo.2022.13
21.
DeGroot
,
C.
,
Wang
,
C.
, and
Floryan
,
J.
,
2016
, “
Drag Reduction Due to Streamwise Grooves in Turbulent Channel Flow
,”
ASME J. Fluids Eng.
,
138
(
12
), p.
121201
.10.1115/1.4034098
22.
Endrikat
,
S.
,
Modesti
,
D.
,
García-Mayoral
,
R.
,
Hutchins
,
N.
, and
Chung
,
D.
,
2021
, “
Influence of Riblet Shapes on the Occurrence of Kelvin–Helmholtz Rollers
,”
J. Fluid Mech.
,
913
, p.
A37
.10.1017/jfm.2021.2
23.
Sharma
,
V.
, and
Dutta
,
S.
,
2023
, “
Experimental and Numerical Investigation of Bio-Inspired Riblet for Drag Reduction
,”
ASME J. Fluids Eng.
,
145
(
2
), p.
021207
.10.1115/1.4056185
24.
Wangsawijaya
,
D. D.
,
Baidya
,
R.
,
Chung
,
D.
,
Marusic
,
I.
, and
Hutchins
,
N.
,
2020
, “
The Effect of Spanwise Wavelength of Surface Heterogeneity on Turbulent Secondary Flows
,”
J. Fluid Mech.
,
894
, p.
A7
.10.1017/jfm.2020.262
25.
Forooghi
,
P.
,
Yang
,
X. I.
, and
Abkar
,
M.
,
2020
, “
Roughness-Induced Secondary Flows in Stably Stratified Turbulent Boundary Layers
,”
Phys. Fluids
,
32
(
10
), p.
105118
.10.1063/5.0025949
26.
Hwang
,
H. G.
, and
Lee
,
J. H.
,
2018
, “
Secondary Flows in Turbulent Boundary Layers Over Longitudinal Surface Roughness
,”
Phys. Rev. Fluids
,
3
(
1
), p.
014608
.10.1103/PhysRevFluids.3.014608
27.
Yang
,
J.
, and
Anderson
,
W.
,
2018
, “
Numerical Study of Turbulent Channel Flow Over Surfaces With Variable Spanwise Heterogeneities: Topographically-Driven Secondary Flows Affect Outer-Layer Similarity of Turbulent Length Scales
,”
Flow Turbul. Combust.
,
100
(
1
), pp.
1
17
.10.1007/s10494-017-9839-5
28.
Stroh
,
A.
,
Hasegawa
,
Y.
,
Kriegseis
,
J.
, and
Frohnapfel
,
B.
,
2015
, “
Wave-Length-Dependent Rearrangement of Secondary Vortices Over Superhydrophobic Surfaces With Streamwise Grooves
,”
9th International Symposium on Turbulence and Shear Flow Phenomena
, Melbourne, Austalia, June 30–July 3, Paper No. 9A-1.http://www.tsfp-conference.org/proceedings/2015/v3/9A-1.pdf
29.
Stroh
,
A.
,
Hasegawa
,
Y.
,
Kriegseis
,
J.
, and
Frohnapfel
,
B.
,
2016
, “
Secondary Vortices Over Surfaces With Spanwise Varying Drag
,”
J. Turbul.
,
17
(
12
), pp.
1142
1158
.10.1080/14685248.2016.1235277
30.
Medjnoun
,
T.
,
Vanderwel
,
C.
, and
Ganapathisubramani
,
B.
,
2018
, “
Characteristics of Turbulent Boundary Layers Over Smooth Surfaces With Spanwise Heterogeneities
,”
J. Fluid Mech.
,
838
, pp.
516
543
.10.1017/jfm.2017.849
31.
Vanderwel
,
C.
,
Stroh
,
A.
,
Kriegseis
,
J.
,
Frohnapfel
,
B.
, and
Ganapathisubramani
,
B.
,
2019
, “
The Instantaneous Structure of Secondary Flows in Turbulent Boundary Layers
,”
J. Fluid Mech.
,
862
, pp.
845
870
.10.1017/jfm.2018.955
32.
Medjnoun
,
T.
,
Vanderwel
,
C.
, and
Ganapathisubramani
,
B.
,
2020
, “
Effects of Heterogeneous Surface Geometry on Secondary Flows in Turbulent Boundary Layers
,”
J. Fluid Mech.
,
886
, p.
A31
.10.1017/jfm.2019.1014
33.
Zampino
,
G.
,
Lasagna
,
D.
, and
Ganapathisubramani
,
B.
,
2022
, “
Linearised Reynolds-Averaged Predictions of Secondary Currents in Turbulent Channels With Topographic Heterogeneity
,”
J. Fluid Mech.
,
944
, p.
A4
.10.1017/jfm.2022.478
34.
Chung
,
D.
,
Monty
,
J. P.
, and
Hutchins
,
N.
,
2018
, “
Similarity and Structure of Wall Turbulence With Lateral Wall Shear Stress Variations
,”
J. Fluid Mech.
,
847
, pp.
591
613
.10.1017/jfm.2018.336
35.
Stroh
,
A.
,
Schäfer
,
K.
,
Frohnapfel
,
B.
, and
Forooghi
,
P.
,
2020
, “
Rearrangement of Secondary Flow Over Spanwise Heterogeneous Roughness
,”
J. Fluid Mech.
,
885
, p.
R5
.10.1017/jfm.2019.1030
36.
Peskin
,
C. S.
,
2002
, “
The Immersed Boundary Method
,”
Acta Numer.
,
11
, pp.
479
517
.10.1017/S0962492902000077
37.
Chester
,
S.
,
Meneveau
,
C.
, and
Parlange
,
M. B.
,
2007
, “
Modeling Turbulent Flow Over Fractal Trees With Renormalized Numerical Simulation
,”
J. Comput. Phys.
,
225
(
1
), pp.
427
448
.10.1016/j.jcp.2006.12.009
38.
Anderson
,
W.
,
Barros
,
J. M.
,
Christensen
,
K. T.
, and
Awasthi
,
A.
,
2015
, “
Numerical and Experimental Study of Mechanisms Responsible for Turbulent Secondary Flows in Boundary Layer Flows Over Spanwise Heterogeneous Roughness
,”
J. Fluid Mech.
,
768
, pp.
316
347
.10.1017/jfm.2015.91
39.
Rana
,
S.
,
Anderson
,
W.
, and
Day
,
M.
,
2021
, “
An Entrainment Paradox: How Hysteretic Saltation and Secondary Transport Augment Atmospheric Uptake of Aeolian Source Materials
,”
J. Geophys. Res.: Atmos.
,
126
(
10
), p.
e2020JD033493
.10.1029/2020JD033493
40.
Zhang
,
W.
,
Zhu
,
X.
,
Yang
,
X. I.
, and
Wan
,
M.
,
2022
, “
Evidence for Raupach et al.'s Mixing-Layer Analogy in Deep Homogeneous Urban-Canopy Flows
,”
J. Fluid Mech.
,
944
, p.
A46
.10.1017/jfm.2022.507
41.
Zhang
,
W.
,
Yang
,
X. I.
,
Zhu
,
X.
,
Wan
,
M.
, and
Chen
,
S.
,
2023
, “
Asymmetric Secondary Flows Above Geometrically Symmetric Surface Roughness
,”
J. Fluid Mech.
,
970
, p.
A15
.10.1017/jfm.2023.590
42.
Moser
,
R. D.
,
Kim
,
J.
, and
Mansour
,
N. N.
,
1999
, “
Direct Numerical Simulation of Turbulent Channel Flow Up to Re τ = 590
,”
Phys. Fluids
,
11
(
4
), pp.
943
945
.10.1063/1.869966
43.
Coceal
,
O.
,
Thomas
,
T.
,
Castro
,
I.
, and
Belcher
,
S.
,
2006
, “
Mean Flow and Turbulence Statistics Over Groups of Urban-Like Cubical Obstacles
,”
Boundary Layer Meteorol.
,
121
(
3
), pp.
491
519
.10.1007/s10546-006-9076-2
44.
Leonardi
,
S.
, and
Castro
,
I. P.
,
2010
, “
Channel Flow Over Large Cube Roughness: A Direct Numerical Simulation Study
,”
J. Fluid Mech.
,
651
, pp.
519
539
.10.1017/S002211200999423X
45.
Forooghi
,
P.
,
Stroh
,
A.
,
Magagnato
,
F.
,
Jakirlić
,
S.
, and
Frohnapfel
,
B.
,
2017
, “
Toward a Universal Roughness Correlation
,”
ASME J. Fluids Eng.
,
139
(
12
), p.
121201
.10.1115/1.4037280
46.
Yuan
,
J.
, and
Piomelli
,
U.
,
2014
, “
Roughness Effects on the Reynolds Stress Budgets in Near-Wall Turbulence
,”
J. Fluid Mech.
,
760
, p.
R1
.10.1017/jfm.2014.608
47.
Jouybari
,
M. A.
,
Yuan
,
J.
,
Brereton
,
G. J.
, and
Murillo
,
M. S.
,
2021
, “
Data-Driven Prediction of the Equivalent Sand-Grain Height in Rough-Wall Turbulent Flows
,”
J. Fluid Mech.
,
912
, p.
A8
.10.1017/jfm.2020.1085
48.
Raupach
,
M. R.
, and
Shaw
,
R. H.
,
1982
, “
Averaging Procedures for Flow Within Vegetation Canopies
,”
Boundary Layer Meteorol.
,
22
(
1
), pp.
79
90
.10.1007/BF00128057
49.
Prandtl
,
L.
,
1953
,
Essentials of Fluid Dynamics
,
Blackie & Son
, London, UK.
50.
Pope
,
S.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.
51.
Xu
,
H. H.
,
Altland
,
S. J.
,
Yang
,
X. I.
, and
Kunz
,
R. F.
,
2021
, “
Flow Over Closely Packed Cubical Roughness
,”
J. Fluid Mech.
,
920
, p.
A37
.10.1017/jfm.2021.456
You do not currently have access to this content.