Abstract

This paper discusses the modal global stability analysis of the boundary layer (BL) formed over a circular cylinder subjected to oblique nonuniform suction and injection. The linearized stability equations governing the system are obtained using a standard procedure in the cylindrical coordinate system, followed by discretization using the spectral method. The discretized equations, accompanied by suitable boundary conditions, constitute an eigenvalue problem (EVP) that is solved using the arpack with a shift-and-invert approach. The stability computations are performed for different inclination angles (θ = 30deg,60deg,90deg,120deg, and 150deg), transpiration velocities (I=0.5%, 1.5%, and 2.5% of U), Reynolds numbers (Reδ*=195,285, and 411), and different azimuthal wavenumbers (N=010) for both uniform and nonuniform profiles of suction and injection. The results reveal that instability modes, such as Tollmien–Schlichting (T–S) waves, are damped due to suction and amplified due to injection. The T–S branch of the eigenspectra shifts toward the damped region as the suction angle increases, while it moves toward the upper half-plane as injection angle increases, specifically from θ=0deg to 90deg. The uniform suction profile is found to be modally more stable than the nonuniform profiles, while nonuniform injection profiles are found to be more stable than the uniform profile. The energy balance analysis is also performed corresponding to leading nonstationary eigenmodes, and the results reveal that suction has a strong damping viscous dissipation (VD) effect, while injection has a strong amplifying energy production effect.

References

1.
Parsons
,
J. S.
,
Goodson
,
R. E.
, and
Goldschmied
,
F. R.
,
1974
, “
Shaping of Axisymmetric Bodies of Minimum Drag in Incompressible Flow
,”
J. Hydronautics
,
8
(
3
), pp.
100
107
.10.2514/3.48131
2.
Zedan
,
M. F.
, and
Dalton
,
C.
,
1979
, “
Viscous Drag Computation for Axisymmetric Bodies at High Reynolds Numbers
,”
J. Hydronautics
,
13
(
2
), pp.
52
60
.10.2514/3.63153
3.
Bushnell
,
D. M.
,
1983
, “
Turbulent Drag Reduction for External Flows
,”
J. AIAA
,
83
, p.
0227
.10.2514/6.1983-227
4.
Wazzan
,
A. R.
,
Gazley
,
C.
, and
Smith
,
A. M. O.
,
1979
, “
Tollmien-Schlichting Waves and Transition: Heated and Adiabatic Wedge Flows With Application to Bodies of Revolution
,”
Prog. Aerosp. Sci.
,
18
, pp.
351
392
.10.1016/0376-0421(77)90012-4
5.
Schlichting
,
H.
, and
Gersten
,
K.
,
2016
,
Boundary-Layer Theory
,
Springer-Verlag Berlin Heidelberg
, Berlin, Germany.
6.
Glauert
,
M. B.
, and
Lighthill
,
M. J.
,
1955
, “
The Axisymmetric Boundary Layer on a Long Thin Cylinder
,”
Proc. R. Soc. London A
,
230
(
1181
), pp.
188
203
.10.1098/rspa.1955.0121
7.
Jaffe
,
N.
, and
Okamura
,
T.
,
1968
, “
The Transverse Curvature Effect on the Incompressible Laminar Boundary Layer for Longitudinal Flow Over a Cylinder
,”
J. Appl. Math. Phys. (ZAMP)
,
19
(
4
), pp.
564
574
.10.1007/BF01594964
8.
Morris
,
P.
, and
Byon
,
W.
,
1982
, “
The Stability of the Axisymmetric Boundary Layer on a Circular Cylinder
,”
J. AIAA
,
82
(
1012
), pp.
1
10
.10.2514/6.1982-1012
9.
Tutty
,
O. R.
,
Price
,
W. G.
, and
Parsons
,
A. T.
,
2002
, “
Boundary Layer Flow on a Long Thin Cylinder
,”
Phys. Fluids
,
14
(
2
), pp.
628
637
.10.1063/1.1427921
10.
Bhoraniya
,
R.
, and
Narayanan
,
V.
,
2018
, “
Global Stability Analysis of Axisymmetric Boundary Layer Over a Circular Cylinder
,”
Theor. Comput. Fluid Dyn.
,
32
(
4
), pp.
425
449
.10.1007/s00162-018-0461-5
11.
Nayfeh
,
A. H.
, and
Reed
,
H. L.
,
1982
, “
The Stability of the Flow Over Axisymmetric Bodies With Porous Suction Strips
,”
J. AIAA
,
82
(
1012
), pp.
1
12
.10.2514/6.1982-1025
12.
Bar-Haim
,
B.
, and
Weihs
,
D.
,
1985
, “
Boundary Layer Flow Over Long Cylinders With Suction
,”
ASME J. Appl. Mech.
,
52
(
1
), pp.
203
207
.10.1115/1.3168998
13.
Ramsay
,
J.
,
Sellier
,
M.
, and
Ho
,
W. H.
,
2020
, “
Eliminating Boundary Layer Separation on a Cylinder With Nonuniform Suction
,”
Int. J. Aerosp. Eng.
,
2020
, pp.
1
11
.10.1155/2020/9137369
14.
Fransson
,
J.
,
Konieczny
,
P.
, and
Alfredsson
,
P.
,
2004
, “
Flow Around a Porous Cylinder Subject to Continuous Suction or Blowing
,”
J. Fluids Struct.
,
19
(
8
), pp.
1031
1048
.10.1016/j.jfluidstructs.2004.06.005
15.
Griffond
,
J.
,
Casalis
,
G.
, and
Pineau
,
J.-P.
,
2000
, “
Spatial Instability of Flow in a Semiinfinite Cylinder With Fluid Injection Through Its Porous Walls
,”
Eur. J. Mech. - B/Fluids
,
19
(
1
), pp.
69
87
.10.1016/S0997-7546(00)00105-9
16.
Datta
,
P.
,
Anilkumar
,
D.
,
Roy
,
S.
, and
Mahanti
,
N.
,
2006
, “
Effect of Non-Uniform Slot Injection (Suction) on a Forced Flow Over a Slender Cylinder
,”
Int. J. Heat Mass Transfer
,
49
(
13–14
), pp.
2366
2371
.10.1016/j.ijheatmasstransfer.2005.10.044
17.
Ishak
,
A.
,
Nazar
,
R.
, and
Pop
,
I.
,
2007
, “
The Effects of Transpiration on the Boundary Layer Flow and Heat Transfer Over a Vertical Slender Cylinder
,”
Int. J. Non-Linear Mech.
,
42
(
8
), pp.
1010
1017
.10.1016/j.ijnonlinmec.2007.05.004
18.
Awaludin
,
I. S.
,
Ahmad
,
R.
, and
Ishak
,
A.
,
2020
, “
On the Stability of the Flow Over a Shrinking Cylinder With Prescribed Surface Heat Flux
,”
Propul. Power Res.
,
9
(
2
), pp.
181
187
.10.1016/j.jppr.2020.03.001
19.
Al-Saeedi
,
B.
,
Abdelrazik
,
F.
,
Fildes
,
M.
, and
Hussain
,
Z.
,
2023
, “
Effects of the Suction/Injection and External Free Stream on the Instability of a Boundary Layer Over a Rotating Disk
,”
Phys. Fluids
,
35
(
5
), p.
054103
.10.1063/5.0137448
20.
Al-Malki
,
M.
,
Hussain
,
Z.
,
Garrett
,
S.
, and
Calabretto
,
S.
,
2021
, “
Effects of Parietal Suction and Injection on the Stability of the Blasius Boundary-Layer Flow Over a Permeable, Heated Plate
,”
Phys. Rev. Fluids
,
6
(
11
), p.
113902
.10.1103/PhysRevFluids.6.113902
21.
Pluvinage
,
F.
,
Kourta
,
A.
, and
Bottaro
,
A.
,
2015
, “
Instabilities in the Asymptotic Suction Boundary Layer Over a Permeable, Compliant Wall
,”
Phys. Fluids
,
27
(
5
), p.
054104
.10.1063/1.4921422
22.
Park
,
D.
, and
Huerre
,
P.
,
1995
, “
Primary and Secondary Instabilities of the Asymptotic Suction Boundary Layer on a Curved Plate
,”
J. Fluid Mech.
,
283
, pp.
249
272
.10.1017/S0022112095002308
23.
Cherubini
,
S.
,
De Palma
,
P.
, and
Robinet
,
J.-C.
,
2015
, “
Nonlinear Optimals in the Asymptotic Suction Boundary Layer: Transition Thresholds and Symmetry Breaking
,”
Phys. Fluids
,
27
(
3
), p.
034108
.10.1063/1.4916017
24.
Minkowycz
,
W.
,
Sparrow
,
E.
,
Schneider
,
G.
, and
Pletcher
,
R.
,
1988
,
Handbook of Numerical Heat Transfer
,
Wiley
,
New York
.
25.
Cheng
,
L.
,
Huang
,
H.-X.
,
Sun
,
X.-L.
,
Ma
,
S.
, and
Tan
,
H.-J.
,
2024
, “
Experimental Investigation on Periodic Characteristics of High-Frequency Oblique Slot Plasma Synthetic Jet Actuator
,”
Phys. Fluids
,
36
(
1
), p.
016154
.10.1063/5.0185175
26.
Schrauf
,
G.
,
2005
, “
Status and Perspectives of Laminar Flow
,”
Aeronaut. J.
,
109
(
1102
), pp.
639
644
.10.1017/S000192400000097X
27.
Vafai
,
K.
,
2015
,
Handbook of Porous Media
, 3rd ed.,
CRC Press
,
Boca Raton, FL/London/New York
.
28.
Nield
,
D.
, and
Bejan
,
A.
,
2017
,
Convection in Porous Media
, 5th ed.,
Springer
,
New York
.
29.
Ingham
,
D.
, and
Pop
,
I.
,
1998
,
Transport Phenomena in Porous Media
, 1st ed.,
Elsevier, Pergamon
,
New York
.
30.
Trefethen
,
L. N.
,
2000
,
Spectral Methods in MATLAB (SIAM)
,
Oxford University
,
Oxford, UK
.
31.
Malik
,
M. R.
,
1990
, “
Numerical Methods for Hypersonic Boundary Layer Stability
,”
J. Comput. Phys.
,
86
(
2
), pp.
376
413
.10.1016/0021-9991(90)90106-B
32.
Costa
,
B.
,
Don
,
W.
, and
Simas
,
A.
,
2007
, “
Spatial Resolution Properties of Mapped Spectral Chebyshev Methods
,”
SCPDE: Recent Prog. Sci. Comput.
, pp.
179
188
.https://www.researchgate.net/profile/Wai-Sun-Don-2/publication/228978381_Spatial_resolution_properties_of_mapped_spectral_Chebyshev_methods/links/53fd6bca0cf22f21c2f7f612/Spatialresolution-properties-of-mapped-spectral-Chebyshev-methods.pdf
33.
Theofilis
,
V.
,
2003
, “
Advances in Global Linear Instability Analysis of Nonparallel and Three-Dimensional Flows
,”
Prog. Aerosp. Sci.
,
39
(
4
), pp.
249
315
.10.1016/S0376-0421(02)00030-1
34.
Bhoraniya
,
R.
, and
Narayanan
,
V.
,
2019
, “
Global Stability Analysis of Spatially Developing Boundary Layer: Effect of Streamwise Adverse Pressure Gradients
,”
Fluid Dyn.
,
54
(
6
), pp.
821
834
.10.1134/S0015462819060028
35.
Bhoraniya
,
R.
,
Hussain
,
Z.
, and
Narayanan
,
V.
,
2021
, “
Global Stability Analysis of Axisymmetric Boundary Layer on a Slender Circular Cone With Streamwise Adverse Pressure Gradient
,”
Eur. J. Mech. - B/Fluids
,
87
, pp.
113
127
.10.1016/j.euromechflu.2021.01.008
36.
Bhoraniya
,
R.
, and
Narayanan
,
V.
,
2017
, “
Global Stability Analysis of Axisymmetric Boundary Layer Over a Circular Cone
,”
Phys. Rev. Fluids
,
2
(
6
), p.
063901
.10.1103/PhysRevFluids.2.063901
37.
Swaminathan
,
G.
,
Sahu
,
K. C.
,
Sameen
,
A.
, and
Govindarajan
,
R.
,
2011
, “
Global Instabilities in Diverging Channel Flows
,”
Theor. Comput. Fluid Dyn.
,
25
(
1–4
), pp.
53
64
.10.1007/s00162-010-0187-5
38.
Thummar
,
M.
,
Bhoraniya
,
R.
, and
Narayanan
,
V.
,
2023
, “
Modal and Non-Modal Stability of the Heated Flat-Plate Boundary Layer With Temperature-Dependent Viscosity
,”
Fluid Dyn.
,
58
(
3
), pp.
450
475
.10.1134/S0015462822601632
39.
Thummar
,
M.
,
Bhoraniya
,
R.
, and
Narayanan
,
V.
,
2024
, “
Transient Energy Growth Analysis of Flat-Plate Boundary Layer With an Oblique and Non-Uniform Wall Suction and Injection
,”
Int. J. Heat Fluid Flow
,
106
, p.
109275
.10.1016/j.ijheatfluidflow.2023.109275
40.
Cathalifaud
,
P.
, and
Luchini
,
P.
,
2000
, “
Algebraic Growth in Boundary Layers: Optimal Control by Blowing and Suction at the Wall
,”
Eur. J. Mech. - B/Fluids
,
19
(
4
), pp.
469
490
.10.1016/S0997-7546(00)00128-X
41.
Rempfer
,
D.
,
2006
, “
On Boundary Conditions for Incompressible Navier-Stokes Problems
,”
ASME Appl. Mech. Rev.
,
59
(
3
), pp.
107
125
.10.1115/1.2177683
42.
Theofilis
,
V.
,
2017
, “
The Linearized Pressure Poisson Equation for Global Instability Analysis of Incompressible Flows
,”
Theor. Comput. Fluid Dyn.
,
31
(
5–6
), pp.
623
642
.10.1007/s00162-017-0435-z
43.
Greenshields
,
C.
,
2022
,
OpenFOAM v10 User Guide
,
The OpenFOAM Foundation
,
London
.
44.
Thummar
,
M.
,
Bhoraniya
,
R.
, and
Narayanan
,
V.
,
2023
, “
Effects of Non-Uniform Suction and Injection on the Flat-Plate Boundary Layer Characteristics
,”
Fluid Mechanics and Fluid Power (Vol. 2) (FMFP 2021)
(Lecture Notes in Mechanical Engineering (LNME), Vol. 2),
S.
Bhattacharyya
, and
A.
Benim
, eds.,
Springer
,
Singapore
, pp.
25
30
.
45.
Thummar
,
M.
,
Bhoraniya
,
R.
, and
Narayanan
,
V.
,
2023
, “
Effect of Oblique and Non-Uniform Wall Suction and Injection on the Characteristics of Flat-Plate Boundary Layer
,”
AIP Conf. Proc.
,
2855
, p.
090001
.10.1063/5.0168253
46.
Sengupta
,
T.
,
2012
,
Instabilities of Flows and Transition to Turbulence
, 1st ed.,
CRC Press
,
Boca Raton, FL/London/New York
.
47.
Ehrenstein
,
U.
, and
Gallaire
,
F.
,
2005
, “
On Two-Dimensional Temporal Modes in Spatially Evolving Open Flow: The Flat-Plate Boundary Layer
,”
J. Fluid Mech.
,
536
, pp.
209
218
.10.1017/S0022112005005112
48.
Kirthy
,
S. K.
, and
Diwan
,
S. S.
,
2021
, “
Energy Budget Analysis and Neutral Curve Characteristics for the Linear Instability of Couette–Poiseuille Flow
,”
Phys. Fluids
,
33
(
3
), p.
034102
.10.1063/5.0033474
49.
Loiseau
,
J.
,
Robinet
,
J.
,
Cherubini
,
S.
, and
Leriche
,
E.
,
2014
, “
Investigation of the Roughness-Induced Transition: Global Stability Analyses and Direct Numerical Simulations
,”
J. Fluid Mech.
,
760
, pp.
175
211
.10.1017/jfm.2014.589
50.
Cooper
,
A.
, and
Carpenter
,
P.
,
1997
, “
The Stability of Rotating-Disc Boundary-Layer Flow Over a Compliant Wall. Part 1. Type I and II Instabilities
,”
J. Fluid Mech.
,
350
, pp.
231
259
.10.1017/S0022112097006976
51.
Cooper
,
A. J.
,
Harris
,
J. H.
,
Garrett
,
S. J.
,
Özkan
,
M.
, and
Thomas
,
P. J.
,
2015
, “
The Effect of Anisotropic and Isotropic Roughness on the Convective Stability of the Rotating Disk Boundary Layer
,”
Phys. Fluids
,
27
(
1
), p.
014107
.10.1063/1.4906091
52.
Garrett
,
S. J.
,
Cooper
,
A. J.
,
Harris
,
J. H.
,
Özkan
,
M.
,
Segalini
,
A.
, and
Thomas
,
P. J.
,
2016
, “
On the Stability of Von Kármán Rotating-Disk Boundary Layers With Radial Anisotropic Surface Roughness
,”
Phys. Fluids
,
28
(
1
), p.
014104
.10.1063/1.4939793
53.
Miller
,
R.
,
Griffiths
,
P. T.
,
Hussain
,
Z.
, and
Garrett
,
S. J.
,
2020
, “
On the Stability of a Heated Rotating-Disk Boundary Layer in a Temperature-Dependent Viscosity Fluid
,”
Phys. Fluids
,
32
(
2
), p.
024105
.10.1063/1.5129220
54.
Fildes
,
M.
,
Hussain
,
Z.
,
Unadkat
,
J.
, and
Garrett
,
S.
,
2020
, “
Analysis of Boundary Layer Flow Over a Broad Rotating Cone in Still Fluid With Non-Stationary Modes
,”
Phys. Fluids
,
32
(
12
), p.
124118
.10.1063/5.0033202
You do not currently have access to this content.