Abstract

A novel thermally actuated hybrid microvalve (similar to a Tesla valve configuration) was designed, fabricated, assembled, and tested using soft lithography-based approaches. The modified design integrates the “normally open and closed” hybrid configurations of Tesla valves with a thermo-pneumatic (or thermal-hydraulic) actuator microfabricated in situ that modulates the diodicity of the microvalve apparatus in the microfluidic chip. Diodicity (Di) is defined as the ratio of flowrate in the forward direction to that of the reverse direction (for a constant value of pressure drop that is imposed on a microvalve device). The results from the study successfully demonstrated the operation of an array of Tesla Valves that are normally open in forward direction and marginally closed in reverse direction at room temperature (i.e., with Di > 1, the flow resistance values were different when the inlet and outlet ports were swapped). When the microfluidic chip was heated (at steady-state conditions with a nominal temperature of ∼30 °C), the diodicity virtually vanished (i.e., Di ≈ 1) resulting in both reverse and forward directions being normally open (or having the same flow resistance irrespective of the flow direction).

References

1.
Kilby
,
J. S.
,
1976
, “
Invention of the Integrated Circuit
,”
IEEE Trans. Electron Devices
,
23
(
7
), pp.
648
654
.10.1109/T-ED.1976.18467
2.
Lorenzini
,
D.
,
Green
,
C.
,
Sarvey
,
T. E.
,
Zhang
,
X.
,
Hu
,
Y.
,
Fedorov
,
A. G.
,
Bakir
,
M. S.
, and
Joshi
,
Y.
,
2016
, “
Embedded Single Phase Microfluidic Thermal Management for Non-Uniform Heating and Hotspots Using Microgaps With Variable Pin Fin Clustering
,”
Int. J. Heat Mass Transfer
,
103
, pp.
1359
1370
.10.1016/j.ijheatmasstransfer.2016.08.040
3.
Sesen
,
M.
, and
Rowlands
,
C. J.
,
2021
, “
Thermally-Actuated Microfluidic Membrane Valve for Point-of-Care Applications
,”
Microsyst. Nanoeng.
,
7
(
1
), p.
48
.10.1038/s41378-021-00260-3
4.
Sticker
,
D.
,
Geczy
,
R.
,
Hafeli
,
U. O.
, and
Kutter
,
J. P.
,
2020
, “
Thiol–Ene Based Polymers as Versatile Materials for Microfluidic Devices for Life Sciences Applications
,”
ACS Appl. Mater. Interfaces
,
12
(
9
), pp.
10080
10095
.10.1021/acsami.9b22050
5.
Wu
,
J.
,
Fang
,
H.
,
Zhang
,
J.
, and
Yan
,
S.
,
2023
, “
Modular Microfluidics for Life Sciences
,”
J. Nanobiotechnol.
,
21
(
1
), p.
85
.10.1186/s12951-023-01846-x
6.
Santra
,
T. S.
(Ed.).,
2020
,
Microfluidics and Bio-Mems: Devices and Applications
,
CRC Press
, Boca Raton, FL.
7.
Verpoorte
,
E.
, and
De Rooij
,
N. F.
,
2003
, “
Microfluidics Meets MEMS
,”
Proc. IEEE
,
91
(
6
), pp.
930
953
.10.1109/JPROC.2003.813570
8.
Oh
,
K. W.
, and
Ahn
,
C. H.
,
2006
, “
A Review of Microvalves
,”
J. Micromech. Microeng.
,
16
(
5
), pp.
R13
R39
.10.1088/0960-1317/16/5/R01
9.
Amasia
,
M.
,
Kang
,
S.-W.
,
Banerjee
,
D.
, and
Madou
,
M.
,
2013
, “
Experimental Validation of Numerical Study on Thermoelectric-Based Heating in an Integrated Centrifugal Microfluidic Platform for Polymerase Chain Reaction Amplification
,”
Biomicrofluidics
,
7
(
1
), p.
014106
.10.1063/1.4789756
10.
Olanrewaju
,
A.
,
Beaugrand
,
M.
,
Yafia
,
M.
, and
Juncker
,
D.
,
2018
, “
Capillary Microfluidics in Microchannels: From Microfluidic Networks to Capillaric Circuits
,”
Lab a Chip
,
18
(
16
), pp.
2323
2347
.10.1039/C8LC00458G
11.
Yokoyama
,
Y.
,
Takeda
,
M.
,
Umemoto
,
T.
, and
Ogushi
,
T.
,
2004
, “
Thermal Micro Pumps for a Loop-Type Micro Channel
,”
Sens. Actuators A: Phys.
,
111
(
1
), pp.
123
128
.10.1016/j.sna.2003.10.012
12.
Johnson
,
R. D.
,
Badr
,
I. H. A.
,
Barrett
,
G.
,
Lai
,
S.
,
Lu
,
Y.
,
Madou
,
M. J.
, and
Bachas
,
L. G.
,
2001
, “
Development of a Fully Integrated Analysis System for Ions Based on Ion-Selective Optodes and Centrifugal Microfluidics
,”
Anal. Chemistry
,
73
(
16
), pp.
3940
3946
.10.1021/ac0102819
13.
Yamada
,
M.
, and
Seki
,
M.
,
2004
, “
Nanoliter-Sized Liquid Dispenser Array for Multiple Biochemical Analysis in Microfluidic Devices
,”
Anal. Chem.
,
76
(
4
), pp.
895
899
.10.1021/ac0350007
14.
Leu
,
T.-S.
, and
Chang
,
P.-Y.
,
2004
, “
Pressure Barrier of Capillary Stop Valves in Micro Sample Separators
,”
Sens. Actuators A: Phys.
,
115
(
2–3
), pp.
508
515
.10.1016/j.sna.2004.02.036
15.
Forster
,
F. K.
,
Bardell
,
R. L.
,
Afromowitz
,
M. A.
,
Sharma
,
N. R.
, and
Blanchard
,
A.
,
1995
,
Design, Fabrication and Testing of Fixed-Valve Micro-Pumps
, Vol.
234
, pp.
39
44
,
ASME-Publications-FED
, San Francisco, CA.
16.
Thompson
,
S. M.
,
Paudel
,
B. J.
,
Jamal
,
T.
, and
Walters
,
D. K.
,
2014
, “
Numerical Investigation of Multistaged Tesla Valves
,”
ASME J. Fluids Eng.
,
136
(
8
), p. 081102.10.1115/1.4026620
17.
Zhang
,
S.
,
Winoto
,
S. H.
, and
Low
,
H. T.
,
2007
, “
Performance Simulations of Tesla Microfluidic Valves
,”
ASME
Paper No. MNC2007-21107.10.1115/MNC2007-21107
18.
Bamido
,
A.
,
2022
, “
Design, Analysis, Fabrication and Testing of Thermally Actuated Microvalves
,” Ph.D. dissertation, Texas A&M University, College Station, TX.
19.
Mohammadzadeh
,
K.
,
Kolahdouz
,
E. M.
,
Shirani
,
E.
, and
Shafii
,
M. B.
,
2013
, “
Numerical Investigation on the Effect of the Size and Number of Stages on the Tesla Microvalve Efficiency
,”
J. Mech.
,
29
(
3
), pp.
527
534
.10.1017/jmech.2013.29
20.
Porwal
,
P. R.
,
Thompson
,
S. M.
,
Walters
,
D. K.
, and
Jamal
,
T.
,
2018
, “
Heat Transfer and Fluid Flow Characteristics in Multistaged Tesla Valves
,”
Numer. Heat Transfer, Part A
,
73
(
6
), pp.
347
365
.10.1080/10407782.2018.1447199
21.
Raffel
,
J.
,
Ansari
,
S.
, and
Nobes
,
D. S.
,
2021
, “
An Experimental Investigation of Flow Phenomena in a Multistage micro-Tesla Valve
,”
ASME J. Fluids Eng.
,
143
(
11
), p.
111205
.10.1115/1.4051401
22.
Wang
,
P.
,
Hu
,
P.
,
Liu
,
L.
,
Xu
,
Z.
,
Wang
,
W.
, and
Scheid
,
B.
,
2023
, “
On the Diodicity Enhancement of Multistage Tesla Valves
,”
Phys. Fluids
,
35
(
5
) p.
052010
.10.1063/5.0145172
23.
Gamboa
,
A. R.
,
Morris
,
C. J.
, and
Forster
,
F. K.
,
2005
, “
Improvements in Fixed-Valve Micropump Performance Through Shape Optimization of Valves
,”
ASME J. Fluids Eng.
, 127(2), pp.
339
346
.10.1115/1.1891151
24.
Wang
,
C. T.
,
Chen
,
Y. M.
,
Hong
,
P. A.
, and
Wang
,
Y. T.
,
2014
, “
Tesla Valves in Micromixers
,”
Int. J. Chem. Reactor Eng.
,
12
(
1
), pp.
397
403
.10.1515/ijcre-2013-0106
25.
Anagnostopoulos
,
J. S.
, and
Mathioulakis
,
D. S.
,
2005
, “
Numerical Simulation and Hydrodynamic Design Optimization of a Tesla-Type Valve for Micropumps
,”
IASME Trans.
,
2
(
9
), pp.
1846
1852
.https://www.researchgate.net/publication/266574843_Numerical_Simulation_and_Hydrodynamic_Design_Optimization_of_a_Tesla-Type_Valve_for_Micropumps
26.
Du
,
G.
,
Alsenani
,
T. R.
,
Kumar
,
J.
,
Alkhalaf
,
S.
,
Alkhalifah
,
T.
,
Alturise
,
F.
,
Almujibah
,
H.
,
Znaidia
,
S.
, and
Deifalla
,
A.
,
2023
, “
Improving Thermal and Hydraulic Performances Through Artificial Neural Networks: An Optimization Approach for Tesla Valve Geometrical Parameters
,”
Case Stud. Therm. Eng.
,
52
, p.
103670
.10.1016/j.csite.2023.103670
27.
Xiangyu
,
W. E. N. G.
,
Shenghu
,
Y. A. N.
,
Yue
,
Z. H. A. N. G.
,
Jianwu
,
L.
, and
Jiefa
,
S. H. E. N.
,
2021
, “
Design, Simulation and Experimental Study of a Micromixer Based on Tesla Valve Structure
,”
Chem. Ind. Eng. Prog.
,
40
(
8
), p.
4173
.10.16085/j.issn.1000-6613.2020-1894
28.
Kou
,
C.
,
Alghassab
,
M. A.
,
Abed
,
A. M.
,
Alkhalaf
,
S.
,
Alharbi
,
F. S.
,
Elmasry
,
Y.
,
Abdullaev
,
S.
,
Garalleh
,
H. A. L.
, and
Tarawneh
,
M. A.
,
2024
, “
Modeling of Hydrogen Flow Decompression From a Storage by a Two-Stage Tesla Valve: A Hybrid Approach of Artificial Neural Network, Response Surface Methodology, and Genetic Algorithm Optimization
,”
J. Energy Storage
,
85
, p.
111104
.10.1016/j.est.2024.111104
29.
Jin
,
Z-J.
,
Gao
,
Z-X.
,
Chen
,
M-R.
, and
Qian
,
J-y.
,
2018
, “
Parametric Study on Tesla Valve With Reverse Flow for Hydrogen Decompression
,”
Int. J. Hydrogen Energy
,
43
(
18
), pp.
8888
8896
.10.1016/j.ijhydene.2018.03.014
30.
Bao
,
Y.
, and
Wang
,
H.
,
2022
, “
Numerical Study on Flow and Heat Transfer Characteristics of a Novel Tesla Valve With Improved Evaluation Method
,”
Int. J. Heat Mass Transfer
,
187
, p.
122540
.10.1016/j.ijheatmasstransfer.2022.122540
31.
Qian
,
J. Y.
,
Chen
,
M. R.
,
Liu
,
X. L.
, and
Jin
,
Z. J.
,
2019
, “
A Numerical Investigation of the Flow of Nanofluids Through a Micro Tesla Valve
,”
J. Zhejiang Univ. Sci. A
,
20
(
1
), pp.
50
60
.10.1631/jzus.A1800431
32.
Thompson
,
S. M.
,
Ma
,
H. B.
, and
Wilson
,
C.
,
2011
, “
Investigation of a Flat-Plate Oscillating Heat Pipe With Tesla-Type Check Valves
,”
Exp. Therm. Fluid Sci.
,
35
(
7
), pp.
1265
1273
.10.1016/j.expthermflusci.2011.04.014
33.
Mata
,
A.
,
Fleischman
,
A. J.
, and
Roy
,
S.
,
2005
, “
Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems
,”
Biomed. Microdevices
,
7
(
4
), pp.
281
293
.10.1007/s10544-005-6070-2
34.
Bamido
,
A.
,
Shettigar
,
N.
,
Thyagrajan
,
A.
, and
Banerjee
,
D.
,
2021
, “
Investigation of the Temperature-Dependent Mechanical Properties of Polydimethylsiloxane (PDMS) Membrane for Thermo-Mechanical Applications
,” 20th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
iTherm
),
San Diego, CA, June 1–4, pp.
617
629
.10.1109/ITherm51669.2021.9503254
You do not currently have access to this content.