Abstract

The behavior of interfacial dynamics around a swirling circular drum is reported in the presence of horizontal crossflows of gaseous phase. A constant submergence ratio of the rotary drum is considered throughout this work. Forward and reverse crossflows are defined based on the direction of rotation of drum. A clockwise rotation is imposed on the drum and the rotation direction remains fixed throughout the present investigation. The pattern of film flow and cusp entrainment is observed thoroughly by considering rotational speed (ω) and strength of crossflow as influencing parameters. Strength of crossflow of gaseous phase is calibrated using flow Reynolds number based on roller diameter (Reflow=ρgUD/μg). Subsequently, we characterized the coated film thickness (h*=h/D) and cusp width (H*=H/D) by varying ω and Reflow. Furthermore, efforts are made to observe the influence of gravitational pull (calibrated using Archimedes number, Ar) and viscous drag (determined using Morton number, Mo) on interfacial morphology. The interfacial structures respond more to the rotational inertia compared to crossflow with the continuous increase of Mo. Again, the trailing end of cusp gets widened for the case of forward crossflow, whereas the cusp growth is obstructed in the presence of reverse crossflow, which is visualized using velocity vectors. We have also predicted appropriate correlations for film thickness (h*), cusp width (H*), and steady cusp length (θs*) in the presence of forward as well as reverse crossflow of air stream. Lastly, a theoretical framework is also developed to estimate film thickness and cusp width for both cases of crossflows and this framework agrees well with the simulated predictions.

References

1.
Chinello
,
G.
,
Ayati
,
A. A.
,
McGlinchey
,
D.
,
Ooms
,
G.
, and
Henkes
,
R.
,
2019
, “
Comparison of Computational Fluid Dynamics Simulations and Experiments for Stratified Air-Water Flows in Pipes
,”
ASME J. Fluids Eng.
,
141
(
5
), p.
051302
.10.1115/1.4041667
2.
Singh
,
S.
, and
Musculus
,
M. P.
,
2010
, “
Numerical Modeling and Analysis of Entrainment in Turbulent Jets After the End of Injection
,”
ASME J. Fluids Eng.
,
132
(
8
), p.
081203
.10.1115/1.4002184
3.
Rana
,
B. K.
,
Das
,
A. K.
, and
Das
,
P. K.
,
2016
, “
Asymmetric Bursting of Taylor Bubble in Inclined Tubes
,”
Phys. Fluids
,
28
(
8
), p.
082106
.10.1063/1.4961040
4.
Bertola
,
N.
,
Wang
,
H.
, and
Chanson
,
H.
,
2018
, “
Air Bubble Entrainment, Breakup, and Interplay in Vertical Plunging Jets
,”
ASME J. Fluids Eng.
,
140
(
9
), p.
091301
.10.1115/1.4039715
5.
Rana
,
B. K.
,
Das
,
A. K.
, and
Das
,
P. K.
,
2017
, “
Study of Interaction Pattern Between Bubbles at Three Inline Orifices in a Submerged Pool
,”
Chem. Eng. Sci.
,
168
, pp.
41
54
.10.1016/j.ces.2017.04.044
6.
Kargbo
,
O.
,
Xue
,
M. A.
, and
Zheng
,
J.
,
2021
, “
Multiphase Fluid Dynamics in Storage Tanks of Varying Geometry
,”
ASME J. Fluids Eng.
,
143
(
1
), p.
011405
.10.1115/1.4048786
7.
Rana
,
B. K.
,
Das
,
A. K.
, and
Das
,
P. K.
,
2016
, “
Collapse of a Taylor Bubble at a Free Surface
,”
Multiphase Sci. Technol.
,
28
(
2
), pp.
173
191
.10.1615/MultScienTechn.2017019092
8.
Carrillo Ibañez
,
W. A.
,
Demétrio
,
M. J.
,
Oliveira
,
A. A.
, and
Pereira
,
F. M.
,
2021
, “
Pressure Drop, Air Entrainment, and Moments of the Axial Velocity in the Laminar-Turbulent Transition Jet Flow in Domestic Gas Injectors
,”
ASME J. Fluids Eng.
,
143
(
7
), p.
071203
.10.1115/1.4050515
9.
Rana
,
B. K.
,
Das
,
A. K.
, and
Das
,
P. K.
,
2015
, “
Mechanism of Bursting Taylor Bubbles at Free Surfaces
,”
Langmuir
,
31
(
36
), pp.
9870
9881
.10.1021/acs.langmuir.5b02643
10.
Neumann
,
M.
,
Schäfer
,
T.
,
Bieberle
,
A.
, and
Hampel
,
U.
,
2016
, “
An Experimental Study on the Gas Entrainment in Horizontally and Vertically Installed Centrifugal Pumps
,”
ASME J. Fluids Eng.
,
138
(
9
), p.
091301
.10.1115/1.4033029
11.
Hyun Im
,
J.
, and
Jin Song
,
S.
,
2015
, “
Mixing and Entrainment Characteristics in Circular Short Ejectors
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051103
.10.1115/1.4029412
12.
Bowden
,
R. C.
, and
Hassan
,
I. G.
,
2009
, “
Modeling the Onset of Gas Entrainment in a Single Downward Discharge From a Stratified Gas-Liquid Region With Liquid Crossflow
,”
ASME J. Fluids Eng.
,
131
(
3
), p.
031304
.10.1115/1.3059586
13.
Rana
,
B. K.
,
Das
,
A. K.
, and
Das
,
P. K.
,
2017
, “
Towards the Understanding of Bubble-Bubble Interaction Upon Formation at Submerged Orifices: A Numerical Approach
,”
Chem. Eng. Sci.
,
161
, pp.
316
328
.10.1016/j.ces.2016.12.049
14.
Rana
,
B. K.
,
2023
, “
Mixed Convection Heat Transfer From Swirling Open Spherical Cavity
,”
ASME J. Heat Mass Transfer
,
145
(
6
), p. 062601.10.1115/1.4056372
15.
Davoust
,
L.
,
Achard
,
J. L.
, and
El Hammoumi
,
M.
,
2002
, “
Air Entrainment by a Plunging Jet: The Dynamical Roughness Concept and Its Estimation by a Light Absorption Technique
,”
Int. J. Multiphase Flow
,
28
(
9
), pp.
1541
1564
.10.1016/S0301-9322(02)00040-X
16.
Bowden
,
R. C.
, and
Hassan
,
I. G.
,
2012
, “
Modeling the Onset of Gas Entrainment in a Reduced T-Junction With Co-Current Stratified Gas-Liquid Flow
,”
ASME J. Fluids Eng.
,
134
(
8
), p.
081303
.10.1115/1.4003854
17.
Falcone
,
A. M.
, and
Cataldo
,
J. C.
,
2003
, “
Entrainment Velocity in an Axisymmetric Turbulent Jet
,”
ASME J. Fluids Eng.
,
125
(
4
), pp.
620
627
.10.1115/1.1595674
18.
Singh
,
G.
,
Sundararajan
,
T.
, and
Bhaskaran
,
K. A.
,
2003
, “
Mixing and Entrainment Characteristics of Circular and Noncircular Confined Jets
,”
ASME J. Fluids Eng.
,
125
(
5
), pp.
835
842
.10.1115/1.1595676
19.
Sharma
,
Y.
,
Kumar
,
P.
,
Rana
,
B. K.
, and
Das
,
A. K.
,
2016
, “
Rotary Entrainment in Stratified Gas-Liquid Layers: An Experimental Study
,”
Proc. Indian Natl. Sci. Acad.
,
82
(
4
), pp.
1293
1301
.10.16943/ptinsa/2016/v82/48401
20.
Shul'Man
,
Z. P.
, and
Baikov
,
V. I.
,
1981
, “
Entrainment of a Viscoplastic Fluid by a Rotating Drum
,”
J. Eng. Phys.
,
40
(
6
), pp.
605
608
.10.1007/BF00825446
21.
Benkreira
,
H.
,
Edwards
,
M. F.
, and
Wilkinson
,
W. L.
,
1981
, “
Roll Coating of Purely Viscous Liquids
,”
Chem. Eng. Sci.
,
36
(
2
), pp.
429
434
.10.1016/0009-2509(81)85025-7
22.
Campanella
,
O. H.
, and
Cerro
,
R. L.
,
1984
, “
Viscous Flow on the Outside of a Horizontal Rotating Cylinder: The Roll Coating Regime With a Single Fluid
,”
Chem. Eng. Sci.
,
39
(
10
), pp.
1443
1449
.10.1016/0009-2509(84)80002-0
23.
Panda
,
S. K.
,
Rana
,
B. K.
, and
Kumar
,
P.
,
2022
, “
Entrainment in Multifluid Systems, and Rotation Induced Occurrences
,”
Eur. J. Mech.-B/Fluids
,
96
, pp.
156
172
.10.1016/j.euromechflu.2022.08.001
24.
Tharmalingam
,
S.
, and
Wilkinson
,
W. L.
,
1978
, “
The Coating of Newtonian Liquids Onto a Rotating Roll
,”
Chem. Eng. Sci.
,
33
(
11
), pp.
1481
1487
.10.1016/0009-2509(78)85197-5
25.
Tharmalingam
,
S.
, and
Wilkinson
,
W. L.
,
1978
, “
The Coating of Newtonian Liquids Onto a Roll Rotating at Low Speeds
,”
Polym. Eng. Sci.
,
18
(
15
), pp.
1155
1159
.10.1002/pen.760181506
26.
Middleman
,
S.
,
1978
, “
Free Coating of Viscous and Viscoelastic Liquids Onto a Partially Submerged Rotating Roll
,”
Polym. Eng. Sci.
,
18
(
9
), pp.
734
737
.10.1002/pen.760180909
27.
Bolton
,
B.
, and
Middleman
,
S.
,
1980
, “
Air Entrainment in a Roll Coating System
,”
Chem. Eng. Sci.
,
35
(
3
), pp.
597
601
.10.1016/0009-2509(80)80008-X
28.
Joseph
,
D. D.
,
Nelson
,
J.
,
Renardy
,
M.
, and
Renardy
,
Y.
,
1991
, “
Two-Dimensional Cusped Interfaces
,”
J. Fluid Mech.
,
223
(
−1
), pp.
383
409
.10.1017/S0022112091001477
29.
Jeong
,
J. T.
, and
Moffatt
,
H. K.
,
1992
, “
Free-Surface Cusps Associated With Flow at Low Reynolds Number
,”
J. Fluid Mech.
,
241
, pp.
1
22
.10.1017/S0022112092001927
30.
Lorenceau
,
E.
,
Restagno
,
F.
, and
Quéré
,
D.
,
2003
, “
Fracture of a Viscous Liquid
,”
Phys. Rev. Lett.
,
90
(
18
), p.
184501
.10.1103/PhysRevLett.90.184501
31.
Yu
,
S. H.
,
Lee
,
K. S.
, and
Yook
,
S. J.
,
2009
, “
Film Flow Around a Fast Rotating Roller
,”
Int. J. Heat Fluid Flow
,
30
(
4
), pp.
796
803
.10.1016/j.ijheatfluidflow.2009.01.013
32.
Rana
,
B. K.
,
Das
,
A. K.
, and
Das
,
P. K.
,
2016
, “
Numerical Study of Air Entrainment and Liquid Film Wrapping Around a Rotating Cylinder
,”
Ind. Eng. Chem. Res.
,
55
(
46
), pp.
11950
11960
.10.1021/acs.iecr.6b03477
33.
Panda
,
S. K.
, and
Rana
,
B. K.
,
2022
, “
Rotational Flux Influenced Cusp Entrainment in a Viscous Pool
,”
Phys. Fluids
,
34
(
10
), p.
102103
.10.1063/5.0118237
34.
Panda
,
S. K.
, and
Rana
,
B. K.
,
2023
, “
Influence of the Immersion Ratio of a Revolving Roller on the Film Coating and Entrainment Dynamics
,”
Ind. Eng. Chem. Res.
,
62
(
15
), pp.
6285
6300
.10.1021/acs.iecr.3c00095
35.
Kumar
,
P.
,
Prajapati
,
M.
,
Das
,
A. K.
, and
Mitra
,
S. K.
,
2018
, “
Vortex Formation and Subsequent Air Entrainment Inside a Liquid Pool
,”
Ind. Eng. Chem. Res.
,
57
(
18
), pp.
6538
6552
.10.1021/acs.iecr.8b00379
36.
Prajapati
,
M.
,
Kumar
,
P.
,
Das
,
A. K.
, and
Mitra
,
S. K.
,
2020
, “
Numerical Understanding of Free Surface Vortex Driven by Rotational Field Inside Viscous Liquid
,”
Heat Transfer Eng.
,
41
(
15–16
), pp.
1382
1396
.10.1080/01457632.2019.1628486
37.
Kim
,
D.
, and
Kim
,
D.
,
2021
, “
Free-Surface Vortex Formation and Aeration by a Submerged Rotating Disk
,”
Chem. Eng. Sci.
,
243
, p.
116787
.10.1016/j.ces.2021.116787
38.
Kumar
,
P.
,
Das
,
A. K.
, and
Mitra
,
S. K.
,
2017
, “
Air Entrainment Driven by a Converging Rotational Field in a Viscous Liquid
,”
Phys. Fluids
,
29
(
10
), p.
102104
.10.1063/1.4991763
39.
Kumar
,
P.
,
Das
,
A. K.
, and
Mitra
,
S. K.
,
2017
, “
Bending and Growth of Entrained Air Filament Under Converging and Asymmetric Rotational Fields
,”
Phys. Fluids
,
29
(
2
), p.
022101
.10.1063/1.4975211
40.
Panda
,
S. K.
, and
Rana
,
B. K.
,
2023
, “
Behavior of Gas Entrainment Inside Viscous Pool Due to Combined Influence of Symmetric Rotational Field and Freestream Flow of Air
,”
ASME J. Fluids Eng.
,
145
(
2
), p.
021402
.10.1115/1.4055881
41.
Panda
,
S. K.
, and
Rana
,
B. K.
,
2023
, “
Gaseous Entrainment Dynamics in a Viscous Pool Due to Combined Influence of Asymmetric Rotational Field and Crossflow of Air
,”
ASME J. Fluids Eng.
,
145
(
2
), p.
021401
.10.1115/1.4055802
42.
Panda
,
S. K.
, and
Rana
,
B. K.
,
2023
, “
Characterization of Air Entrainment Using a Pair of Vertically Aligned Revolving Rollers
,”
Ind. Eng. Chem. Res.
,
62
(
2
), pp.
998
1015
.10.1021/acs.iecr.2c04008
43.
Panda
,
S. K.
,
Rana
,
B. K.
, and
Kumar
,
P.
,
2021
, “
Competition of Roller Rotation and Horizontal Crossflow to Control the Free Surface Cusp-Induced Air Entrainment
,”
Phys. Fluids
,
33
(
11
), p.
112114
.10.1063/5.0069984
44.
Panda
,
S. K.
, and
Rana
,
B. K.
,
2022
, “
Numerical Simulation and Analytical Prediction on the Development of Entrained Air Filament Caused by the Combined Effect of Rotational Field and Free Stream Flow
,”
Ind. Eng. Chem. Res.
,
61
(
26
), pp.
9456
9473
.10.1021/acs.iecr.2c00684
45.
Sahoo
,
P. C.
,
Senapati
,
J. R.
, and
Rana
,
B. K.
,
2022
, “
Numerical Observation and Analytical Formulation of Droplet Impact and Spreading Around the Thin Vertical Cylinder
,”
Phys. Fluids
,
34
(
4
), p.
042114
.10.1063/5.0086811
46.
Sahoo
,
P. C.
,
Senapati
,
J. R.
, and
Rana
,
B. K.
,
2022
, “
Computational and Analytical Investigation of Droplet Impingement and Spreading Dynamics Around the Right Circular Cone
,”
Langmuir
,
38
(
48
), pp.
14891
14908
.10.1021/acs.langmuir.2c02567
47.
Dhabekar
,
P. P.
,
Sahoo
,
P. C.
,
Senapati
,
J. R.
, and
Rana
,
B. K.
,
2023
, “
Towards Understanding of Spreading and Detachment During Droplet Impact Onto a Hemispherical Surface
,”
Eur. J. Mech.-B/Fluids
,
100
, pp.
52
66
.10.1016/j.euromechflu.2023.03.001
48.
Popinet
,
S.
,
2003
, “
Gerris: A Tree-Based Adaptive Solver for the Incompressible Euler Equations in Complex Geometries
,”
J. Comput. Phys.
,
190
(
2
), pp.
572
600
.10.1016/S0021-9991(03)00298-5
49.
Popinet
,
S.
,
2009
, “
An Accurate Adaptive Solver for Surface-Tension-Driven Interfacial Flows
,”
J. Comput. Phys.
,
228
(
16
), pp.
5838
5866
.10.1016/j.jcp.2009.04.042
50.
Chorin
,
A. J.
,
1969
, “
On the Convergence of Discrete Approximations to the Navier-Stokes Equations
,”
Math. Comput.
,
23
(
106
), pp.
341
353
.10.1090/S0025-5718-1969-0242393-5
51.
Bell
,
J. B.
,
Colella
,
P.
, and
Glaz
,
H. M.
,
1989
, “
A Second-Order Projection Method for the Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
,
85
(
2
), pp.
257
283
.10.1016/0021-9991(89)90151-4
You do not currently have access to this content.