Abstract

This work theoretically investigates the interfacial transport of immiscible fluid layers in an inclined fluidic channel in the presence of magnetofluidic actuation. Immiscible binary system consists of both non-Newtonian fluid (top layer) and Newtonian fluid (bottom layer), while the Carreau fluid model is used to describe the rheology of non-Newtonian layer. We develop a theoretical framework consistent with the homotopy analysis method (HAM) to obtain the approximate analytical solutions for the underlying thermofluidic transport features. By depicting the auxiliary parameter curve (-curve) of flow velocity and temperature distribution, we ascertain the effective reliability of the theoretical method developed here. We demonstrate both velocity and temperature variations in the channel for a set of involving parameters pertinent to this analysis. Albeit the flow configuration considered in this analysis is not complex, yet, the method developed here seems to be efficient in capturing underling transport features, retaining the simultaneously acted implications of fluid rheology and magnetohydrodynamics. Form the consistency observed in predicting the flow velocity for any values of shear-thinning parameter, including nonintegers, our semi-analytical method is deemed pertinent to predict the thermohydrodynamics of immiscible multilayer system even by accurately capturing the intervening effects of fluid rheology and applied fields.

References

1.
Faust
,
C. R.
,
1985
, “
Transport of Immiscible Fluids Within and Below the Unsaturated Zone: A Numerical Model
,”
Water Resour. Res.
,
21
(
4
), pp.
587
596
.10.1029/WR021i004p00587
2.
Shikhmurzaev
,
Y. D.
,
1993
, “
A Two-Layer Model of an Interface Between Immiscible Fluids
,”
Phys. A
,
192
(
1–2
), pp.
47
62
.10.1016/0378-4371(93)90143-R
3.
Chaturani
,
P.
, and
Samy
,
R.
P.,
1985
, “
A Study of Non-Newtonian Aspects of Blood Flow Through Stenosed Arteries and Its Applications in Arterial Diseases
,”
Biorheology
,
22
(
6
), pp.
521
531
.10.3233/BIR-1985-22606
4.
Mahato
,
J.
,
Srivastava
,
D. K.
,
Chandraker
,
D. K.
, and
Lakkaraju
,
R.
,
2022
, “
On Offset Placement of a Compound Droplet in a Channel Flow
,”
ASME J. Fluids Eng.
,
144
(
3
), p.
031401
.10.1115/1.4052052
5.
Laurenzi
,
F.
,
Coroneo
,
M.
,
Montante
,
G.
,
Paglianti
,
A.
, and
Magelli
,
F.
,
2009
, “
Experimental and Computational Analysis of Immiscible Liquid-Liquid Dispersions in Stirred Vessels
,”
Chem. Eng. Res. Des.
,
87
(
4
), pp.
507
514
.10.1016/j.cherd.2008.12.007
6.
Niyousha
,
M.
,
Amir
,
H. A.
, and
Siamak
,
E.
,
2017
, “
Experimental Investigation of Sand Jets Passing Through Immiscible Fluids
,”
ASME J. Fluids Eng.
,
139
(
5
), p.
051303
.10.1115/1.4035762
7.
Soares
,
E. J.
,
Mendes
,
P. R. S.
, and
Carvalho
,
M. S.
,
2008
, “
Immiscible Liquid-Liquid Displacement in Capillary Tubes: Viscoelastic Effects
,”
J. Braz. Soc. Mech. Sci. Eng.
,
30
(
2
), pp.
160
165
.10.1590/S1678-58782008000200009
8.
Yagodnitsyna
,
A. A.
,
Kovalev
,
A. V.
, and
Bilsky
,
A. V.
,
2020
, “
Experimental Study of Flow of Immiscible Liquids With Non-Newtonian Properties in a T-Shaped Microchannel
,”
Interfacial Phenom. Heat Transfer
,
8
(
1
), pp.
49
58
.10.1615/InterfacPhenomHeatTransfer.2020034128
9.
Chamkha
,
A. J.
,
2000
, “
Flow of Two Immiscible Fluids in Porous and Nonporous Channels
,”
ASME J. Fluids Eng.
,
122
(
1
), pp.
117
124
.10.1115/1.483233
10.
Manek
,
V.
,
Fang
,
T.
,
Ghiaasiaan
,
M. S.
, and
Patelczyk
,
J.
,
2022
, “
Single-Phase and Two-Phase Flow Pressure Drop in a Long Double Helicoidally Coiled Tube
,”
ASME J. Fluids Eng.
,
144
(
5
), p.
051401
.10.1115/1.4052545
11.
Umavathi
,
J. C.
,
Chamkha
,
A. J.
,
Mateen
,
A.
, and
Al-Mudhaf
,
A.
,
2005
, “
Unsteady Two-Fluid Flow and Heat Transfer in a Horizontal Channel
,”
Heat Mass Transf
er,
42
(
2
), pp.
81
90
.10.1007/s00231-004-0565-x
12.
Kumar
,
J. P.
,
Umavathi
,
J. C.
,
Chamkha
,
A. J.
, and
Pop
,
I.
,
2010
, “
Fully-Developed Free-Convective Flow of Micropolar and Viscous Fluids in a Vertical Channel
,”
Appl. Math. Modell.
,
34
(
5
), pp.
1175
1186
.10.1016/j.apm.2009.08.007
13.
Alessandra
,
B.
,
Giulia
,
G.
, and
Maria
,
C. P.
,
2017
, “
Reverse Flow in Magnetoconvection of Two Immiscible Fluids in a Vertical Channel
,”
ASME J. Fluids Eng.
,
139
(
10
), p.
101203
.10.1115/1.4036670
14.
Ng
,
C.
, and
Wang
,
C. Y.
,
2019
, “
Starting Poiseuille Flow in a Circular Tube With Two Immiscible Fluids
,”
ASME J. Fluids Eng.
,
141
(
3
), p.
031201
.10.1115/1.4040972
15.
DasGupta
,
D.
,
Mondal
,
P. K.
, and
Chakraborty
,
S.
,
2014
, “
Interfacial Dynamics of Two Immiscible Fluids in Spatially Periodic Porous Media: The Role of Substrate Wettability
,”
Phys. Rev. E
,
90
, p.
013003
.10.1103/PhysRevE.90.013003
16.
Mondal
,
P. K.
,
DasGupta
,
D.
, and
Chakraborty
,
S.
,
2015
, “
Rheology-Modulated Contact Line Dynamics of an Immiscible Binary System Under Electrical Double Layer Phenomena
,”
Soft Matter
,
11
(
33
), pp.
6692
6702
.10.1039/C5SM01175B
17.
Mondal
,
P. K.
,
Ghosh
,
U.
,
Bandopadhyay
,
A.
,
DasGupta
,
D.
, and
Chakraborty
,
S.
,
2013
, “
Electric-Field-Driven Contact-Line Dynamics of Two Immiscible Fluids Over Chemically Patterned Surfaces in Narrow Confinements
,”
Phys. Rev. E
,
88
, p.
023022
.10.1103/PhysRevE.88.023022
18.
Shyam
,
S.
,
Dhapola
,
B.
, and
Mondal
,
P. K.
,
2022
, “
Magnetofluidic-Based Controlled Droplet Breakup: Effect of Non-Uniform Force Field
,”
J. Fluid Mech.
,
944
, p. A51.10.1017/jfm.2022.504
19.
Shyam
,
S.
,
Mondal
,
P. K.
, and
Mehta
,
B.
,
2021
, “
Magnetofluidic Mixing of a Ferrofluid Droplet Under the Influence of a Time-Dependent External Field
,”
J. Fluid Mech.
,
917
, p.
A15
.10.1017/jfm.2021.245
20.
Gaikwad
,
H.
,
Basu
,
D. N.
, and
Mondal
,
P. K.
,
2016
, “
Electroosmotic Transport of Immiscible Binary System With a Layer of Non‐Conducting Fluid Under Interfacial Slip: The Role Applied Pressure Gradient
,”
Electrophoresis
,
37
(
14
), pp.
1998
2009
.10.1002/elps.201500457
21.
DasGupta
,
D.
,
Mondal
,
P. K.
, and
Chakraborty
,
S.
,
2014
, “
Thermocapillary-Actuated Contact-Line Motion of Immiscible Binary Fluids Over Substrates With Patterned Wettability in Narrow Confinement
,”
Phys. Rev. E
,
90
, p.
023011
.10.1103/PhysRevE.90.023011
22.
Umavathi
,
J. C.
,
Liu
,
I. C.
, and
Kumar
,
J. P.
,
2010
, “
Magnetohydrodynamic Poiseuille-Couette Flow and Heat Transfer in an Inclined Channel
,”
J. Mech.
,
26
(
4
), pp.
525
532
.10.1017/S172771910000472X
23.
Wang
,
C. Y.
,
2017
, “
Starting Flow in a Channel With Two Immiscible Fluids
,”
ASME J. Fluids Eng.
,
139
(
2
), p.
124501
.10.1115/1.4037495
24.
Siddiqui
,
A. M.
,
Zeb
,
M.
,
Haroon
,
T.
, and
Qurat-Ul-Ain
,
A.
,
2019
, “
Exact Solution for the Heat Transfer of Two Immiscible PPT Fluids Flowing in Concentric Layers Through a Pipe
,”
Mathematics
,
7
(
1
), pp.
81
97
.10.3390/math7010081
25.
Kang
,
D. H.
, and
Yun
,
T. S.
,
2019
, “
Transitional Non-Darcy Displacement of Immiscible Fluids Due to Inertial Effect
,”
J. Hydrol.
,
577
, p.
123934
.10.1016/j.jhydrol.2019.123934
26.
Gupta
,
R.
, and
Wanchoo
,
R. K.
,
2009
, “
Motion of a Single Newtonian Liquid Drop Through Quiescent Immiscible Visco-Elastic Liquid: Shape and Eccentricity
,”
ASME J. Fluids Eng.
,
131
(
2
), p.
021301
.10.1115/1.3054284
27.
Juan
,
P. E.
,
Juan
,
R. G.
, and
Clara
,
G. H.
,
2020
, “
Multilayer Analysis of Phan-Thien-Tanner Immiscible Fluids Under Electro-Osmotic and Pressure-Driven Effects in a Slit Microchannel
,”
ASME J. Fluids Eng.
,
142
(
6
), p.
061205
.
28.
Murthy
,
J. V. R.
, and
Srinivas
,
J.
,
2013
, “
Second Law Analysis for Poiseuille Flow of Immiscible Micropolar Fluids in a Channel
,”
Int. J. Heat Mass Transfer
,
65
, pp.
254
264
.10.1016/j.ijheatmasstransfer.2013.05.048
29.
Huang
,
Y.
,
Haiwang
,
L.
, and
Wong
,
T. N.
,
2014
, “
Two Immiscible Layers of Electro-Osmotic Driven Flow With a Layer of Conducting Non-Newtonian Fluid
,”
Int. J. Heat Mass Transfer
,
74
, pp.
368
375
.10.1016/j.ijheatmasstransfer.2014.02.068
30.
Gbadeyan
,
A. J.
, and
Ahmed
,
L. O.
,
2021
, “
Steady Magnetohydrodynamic Poiseuille Flow of Two Immiscible Non-Newtonian and Newtonian Fluids in a Horizontal Channel With Ohmic Heating
,”
Heat Transfer
,
50
(
8
), pp.
8330
8353
.10.1002/htj.22279
31.
Carreau
,
P. J.
,
Kee
,
D. D.
, and
Daroux
,
M.
,
1979
, “
An Analysis of the Viscous Behavior of Polymeric Solutions
,”
Can. J. Chem. Eng.
,
57
(
2
), pp.
135
140
.10.1002/cjce.5450570202
32.
Gaikwad
,
H. S.
, and
Mondal
,
P. K.
,
2020
, “
Rheology Modulated High Electrochemomechanical Energy Conversion in Soft Narrow-Fluidic Channel
,”
J. Non-Newtonian Fluid Mech.
,
285
, p.
104381
.10.1016/j.jnnfm.2020.104381
33.
Subramaniam
,
C. G.
, and
Mondal
,
P. K.
,
2020
, “
Effect of Couple Stresses on the Rheology and Dynamics of Linear Maxwell Viscoelastic Fluids
,”
Phys. Fluids
,
32
, p.
013018
.10.1063/1.5140568
34.
Zhao
,
C.
, and
Yang
,
C.
,
2011
, “
Electro-Osmotic Mobility of Non-Newtonian Fluids
,”
Biomicrofluidics
,
5
(
1
), p.
014110
.10.1063/1.3571278
35.
Zanchini
,
E.
,
1998
, “
Effect of Viscous Dissipation on Mixed Convection in a Vertical Channel With Boundary Conditions of the Third Kind
,”
Int. J. Heat Mass Transfer
,
41
(
23
), pp.
3949
3959
.10.1016/S0017-9310(98)00114-8
36.
Umavathi
,
J. C.
, and
Veershetty
,
S.
,
2012
, “
Non-Darcy Mixed Convection in a Vertical Porous Channel With Boundary Conditions of Third Kind
,”
Transp. Porous Media
,
95
(
1
), pp.
111
131
.10.1007/s11242-012-0035-8
37.
Liao
,
S.
,
1992
, “
The Proposed Homotopy Analysis Techniques for the Solution of Nonlinear Problems
,” Ph.D. dissertation,
Shanghai Jiao Tong University
,
Shanghai, China
.
38.
Liao
,
S.
,
2003
,
Beyond Perturbation: Introduction to the Homotopy Analysis Method
,
Chapman & Hall
,
Boca Raton, FL
.
39.
Liao
,
S.
,
2005
, “
Comparison Between the Homotopy Analysis Method and the Homotopy Perturbation Method
,”
Appl. Math. Comput.
,
169
(
2
), pp.
1186
1194
.10.1016/j.amc.2004.10.058
40.
Alomari
,
A. K.
,
Noorani
,
M. S. M.
, and
Nazar
,
R.
,
2009
, “
Comparison Between the Homotopy Analysis Method and Homotopy Perturbation Method to Solve Coupled Schrodinger-KdV Equation
,”
J. Appl. Math. Comput.
,
31
(
1–2
), pp.
1
12
.10.1007/s12190-008-0187-4
41.
Umavathi
,
J. C.
,
Kumar
,
J. P.
, and
Sultana
,
J.
,
2012
, “
Mixed Convection Flow in Vertical Channel With Boundary Conditions of Third Kind in Presence of Heat Source/Sink
,”
Appl. Math. Mech.
,
33
(
8
), pp.
1015
1034
.10.1007/s10483-012-1602-8
42.
Kumar
,
J. P.
,
Umavathi
,
J. C.
,
Chamkha
,
A. J.
, and
Ramarao
,
Y.
,
2015
, “
Mixed Convection of Electrically Conducting and Viscous Fluid in a Vertical Channel Using Robin Boundary Conditions
,”
Can. J. Phys.
,
93
(
6
), pp.
698
710
.10.1139/cjp-2014-0072
43.
Umavathi
,
J. C.
, and
Beg
,
O. A.
,
2019
, “
Numerical Study of Double-Diffusive Dissipative Reactive Convective Flow in an Open Vertical Duct Containing a Non-Darcy Porous Medium With Robin Boundary Conditions
,”
J. Eng. Math.
,
119
(
1
), pp.
135
147
.10.1007/s10665-019-10022-w
44.
Elmaboud
,
Y.
,
Abdelsalam
,
S. I.
,
Mekheimer
,
K. S.
, and
Vafai
,
K.
,
2019
, “
Electromagnetic Flow for Two-Layer Immiscible Fluids
,”
Eng. Sci. Technol., Int. J.
,
22
(
1
), pp.
237
248
.10.1016/j.jestch.2018.07.018
45.
Lohrasbi
,
J.
, and
Sahai
,
V.
,
1988
, “
Magnetohydrodynamic Heat Transfer in Two-Phases Flow Between Parallel Plates
,”
Appl. Sci. Res.
,
45
(
1
), pp.
53
66
.10.1007/BF00384182
You do not currently have access to this content.