Abstract

Impacting droplets and droplet ejection from hydrophobic mesh surfaces have interest in biomedicine, heat transfer engineering, and self-cleaning of surfaces. The rate and the size of newborn droplets can vary depending on the droplet fluid properties, Weber number, mesh geometry, and surface wetting states. In this study, impacting water droplets onto hydrophobic mesh surface is investigated and impact properties including, spreading, rebounding, and droplet fluid penetration and ejection rates are examined. Droplet behavior is assessed using high recording facilities and predicted in line with the experiments. The findings reveal that the critical Weber number for droplet fluid penetrating/ejecting from mesh screen mainly depends on the droplet fluid capillary length, and hydrophobic mesh size. The contact time of impacting droplet over mesh surface reduces with increasing droplet Weber number, which opposes the case observed for impacting droplets over flat hydrophobic surfaces. The restitution coefficient attains lower values for impacting droplets over mesh surfaces than that of flat surfaces. The rate and diameter of the ejected droplet from the mesh increases as droplet Weber increases. At the onset of impact, streamline curvature is formed inside droplet fluid, which creates a stagnation zone with radially varying pressure at the droplet fluid mesh interface. This reduces the ejected droplet diameter from mesh cells as mesh cells are located away from the impacting vertical axis.

References

1.
Broom
,
M. A. J.
, and
Willmott
,
G. R.
,
2020
, “
High Throughput Analysis of Liquid Droplet Impacts
,”
J. Vis. Exp.
,
157
, p.
e60778
.https://www.jove.com/t/60778/highthroughput-analysis-of-liquid-droplet-impacts
2.
Qi
,
W.
, and
Weisensee
,
P. B.
,
2020
, “
Dynamic Wetting and Heat Transfer During Droplet Impact on Bi-Phobic Wettability-Patterned Surfaces
,”
Phys. Fluids
,
32
(
6
), p.
67110
.10.1063/5.0010877
3.
Abubakar
,
A. A.
,
Yilbas
,
B. S.
, and
Al-Qahtani
,
H.
,
2021
, “
A Water Droplet Impact on a Hydrophobic Soft Surface
,”
ASME J. Fluids Eng.
,
143
(
2
), p. 021402.10.1115/1.4048291
4.
Abubakar
,
A. A.
,
Yilbas
,
B. S.
,
Hassan
,
G.
,
Al-Qahtani
,
H.
,
Ali
,
H.
, and
Al-Sharafi
,
A.
,
2020
, “
Droplet Impacting on a Hydrophobic Surface: Influence of Surface Wetting State on Droplet Behavior
,”
ASME J. Fluids Eng.
,
142
(
7
), p.
071205
.10.1115/1.4046559
5.
Wang
,
C.
,
Shao
,
R.
,
Wang
,
G.
, and
Sun
,
S.
,
2021
, “
Hierarchical Hydrophobic Surfaces With Controlled Dual Transition Between Rose Petal Effect and Lotus Effect Via Structure Tailoring or Chemical Modification
,”
Colloids Surf. A Physicochem. Eng. Asp.
,
622
, p.
126661
.10.1016/j.colsurfa.2021.126661
6.
Zhou
,
J.
,
Wang
,
X.
,
Su
,
J.
,
Jing
,
D.
, and
Mohamad
,
A. A.
,
2020
, “
Impact on Mechanical Robustness of Water Droplet Due to Hydrophilic Nanoparticles
,”
Phys. Fluids
,
32
(
12
), p.
122110
.10.1063/5.0025558
7.
Li
,
X.
,
Zhang
,
L.
,
Ma
,
X.
, and
Zhang
,
H.
,
2016
, “
Dynamic Characteristics of Droplet Impacting on Prepared Hydrophobic/Superhydrophobic Silicon Surfaces
,”
Surf. Coat. Technol.
,
307
, pp.
243
253
.10.1016/j.surfcoat.2016.08.089
8.
Pearson
,
J. T.
,
Bilodeau
,
D.
, and
Maynes
,
D.
,
2016
, “
Two-Pronged Jet Formation Caused by Droplet Impact on Anisotropic Superhydrophobic Surfaces
,”
ASME J. Fluids Eng.
,
138
(
7
), p.
074501
.10.1115/1.4032596
9.
Zohrabi
,
C. J.
,
Pishbin
,
S. J.
,
Sheikhi Lotfabadi
,
A.
, and
Passandideh-Fard
,
M.
,
2019
, “
Experimental and Numerical Characterization of Drop Impact on a Hydrophobic Cylinder
,”
ASME J. Fluids Eng.
,
141
(
8
), p.
081112
.10.1115/1.4042666
10.
Abubakar
,
A. A.
,
Yilbas
,
B. S.
,
Hussain A-Qahtani
,
M.
,
Hassan
,
G.
,
Yakubu
,
M.
,
Bahatab
,
S.
, and
Adukwu
,
J. A.
,
2021
, “
Experimental and Model Studies of Various Size Water Droplet Impacting on a Hydrophobic Surface
,”
ASME J. Fluids Eng.
,
143
(
6
), p.
061402
.10.1115/1.4049930
11.
Patil
,
N. D.
,
Bhardwaj
,
R.
, and
Sharma
,
A.
,
2016
, “
Droplet Impact Dynamics on Micropillared Hydrophobic Surfaces
,”
Exp. Therm. Fluid Sci.
,
74
, pp.
195
206
.10.1016/j.expthermflusci.2015.12.006
12.
Wang
,
X.
,
Sun
,
D.-L.
,
Wang
,
X.-D.
, and
Yan
,
W.-M.
,
2019
, “
Dynamics of Droplets Impacting Hydrophilic Surfaces Decorated With a Hydrophobic Strip
,”
Int. J. Heat Mass Transfer
,
135
, pp.
235
246
.10.1016/j.ijheatmasstransfer.2019.01.135
13.
Yang
,
Y.
,
Wu
,
Z.
,
Chen
,
X.
,
Huang
,
Y.
,
Wu
,
B.
,
Falkman
,
P.
, and
Sundén
,
B.
,
2020
, “
Transport Dynamics of Droplet Impact on the Wedge-Patterned Biphilic Surface
,”
Exp. Therm. Fluid Sci.
,
113
, p.
110020
.10.1016/j.expthermflusci.2019.110020
14.
Liu
,
X.
,
Wang
,
K.
,
Fang
,
Y.
,
Chen
,
H.
, and
Shen
,
S.
,
2020
, “
Study of the Surface Wettability Effect on Dynamic Characteristics of Droplet Impacting a Tube With Different Curvature Ratios
,”
Exp. Therm. Fluid Sci.
,
115
, p.
110060
.10.1016/j.expthermflusci.2020.110060
15.
Wang
,
Y.
,
Wang
,
Y.
, and
Wang
,
S.
,
2020
, “
Droplet Impact on Cylindrical Surfaces: Effects of Surface Wettability, Initial Impact Velocity, and Cylinder Size
,”
J. Colloid Interface Sci.
,
578
, pp.
207
217
.10.1016/j.jcis.2020.06.004
16.
Kulju
,
S.
,
Riegger
,
L.
,
Koltay
,
P.
,
Mattila
,
K.
, and
Hyväluoma
,
J.
,
2018
, “
Fluid Flow Simulations Meet High-Speed Video: Computer Vision Comparison of Droplet Dynamics
,”
J. Colloid Interface Sci.
,
522
, pp.
48
56
.10.1016/j.jcis.2018.03.053
17.
Yan
,
J.
,
Yang
,
K.
,
Zhang
,
X.
, and
Zhao
,
J.
,
2017
, “
Analysis of Impact Phenomenon on Superhydrophobic Surfaces Based on Molecular Dynamics Simulation
,”
Comput. Mater. Sci.
,
134
, pp.
8
16
.10.1016/j.commatsci.2017.03.013
18.
Zhang
,
J.-P.
,
Luo
,
Y.
,
Chu
,
G.-W.
,
Sang
,
L.
,
Liu
,
Y.
,
Zhang
,
L.-L.
, and
Chen
,
J.-F.
,
2017
, “
A Hydrophobic Wire Mesh for Better Liquid Dispersion in Air
,”
Chem. Eng. Sci.
,
170
, pp.
204
212
.10.1016/j.ces.2017.03.058
19.
Su
,
M.-J.
,
Luo
,
Y.
,
Chu
,
G.-W.
,
Cai
,
Y.
,
Le
,
Y.
,
Zhang
,
L.-L.
, and
Chen
,
J.-F.
,
2020
, “
Dispersion Behaviors of Droplet Impacting on Wire Mesh and Process Intensification by Surface Micro/Nano-Structure
,”
Chem. Eng. Sci.
,
219
, p.
115593
.10.1016/j.ces.2020.115593
20.
Kumar
,
A.
,
Tripathy
,
A.
,
Nam
,
Y.
,
Lee
,
C.
, and
Sen
,
P.
,
2018
, “
Effect of Geometrical Parameters on Rebound of Impacting Droplets on Leaky Superhydrophobic Meshes
,”
Soft Matter
,
14
(
9
), pp.
1571
1580
.10.1039/C7SM02145C
21.
Wang
,
G.
,
Gao
,
J.
, and
Luo
,
K. H.
,
2020
, “
Droplet Impacting a Superhydrophobic Mesh Array: Effect of Liquid Properties
,”
Phys. Rev. Fluids
,
5
(
12
), p.
123605
.10.1103/PhysRevFluids.5.123605
22.
Xu
,
J.
,
Xie
,
J.
,
He
,
X.
,
Cheng
,
Y.
, and
Liu
,
Q.
,
2017
, “
Water Drop Impacts on a Single-Layer of Mesh Screen Membrane: Effect of Water Hammer Pressure and Advancing Contact Angles
,”
Exp. Therm. Fluid Sci.
,
82
, pp.
83
93
.10.1016/j.expthermflusci.2016.11.006
23.
Šikalo
,
Š.
,
Wilhelm
,
H.-D.
,
Roisman
,
I. V.
,
Jakirlić
,
S.
, and
Tropea
,
C.
,
2005
, “
Dynamic Contact Angle of Spreading Droplets: Experiments and Simulations
,”
Phys. Fluids
,
17
(
6
), p.
62103
.10.1063/1.1928828
24.
Hu
,
J.
,
Xiong
,
X.
,
Xiao
,
H.
, and
Wan
,
K.
,
2015
, “
Effects of Contact Angle on the Dynamics of Water Droplet Impingement
,”
COMSOL Conference
, Boston, MA, Oct. 20.
25.
COMSOL
,
2017
, “
COMSOL Multiphysics
,” COMSOL, Burlington, MA.
26.
Yong
,
W. Y. D.
,
Zhang
,
Z.
,
Cristobal
,
G.
, and
Chin
,
W. S.
,
2014
, “
One-Pot Synthesis of Surface Functionalized Spherical Silica Particles
,”
Colloids Surf. A Physicochem. Eng. Asp.
,
460
, pp.
151
157
.10.1016/j.colsurfa.2014.03.039
27.
Bhattacharya
,
S.
,
Charonko
,
J. J.
, and
Vlachos
,
P. P.
,
2018
, “
Particle Image Velocimetry (PIV) Uncertainty Quantification Using Moment of Correlation (MC) Plane
,”
Meas. Sci. Technol.
,
29
(
11
), p.
115301
.10.1088/1361-6501/aadfb4
28.
Michielsen
,
S.
, and
Lee
,
H. J.
,
2007
, “
Design of a Superhydrophobic Surface Using Woven Structures
,”
Langmuir
,
23
(
11
), pp.
6004
6010
.10.1021/la063157z
29.
Venkateshan
,
D. G.
, and
Tafreshi
,
H. V.
,
2018
, “
Modelling Droplet Sliding Angle on Hydrophobic Wire Screens
,”
Colloids Surf. A Physicochem. Eng. Asp.
,
538
, pp.
310
319
.10.1016/j.colsurfa.2017.11.003
30.
Heib
,
F.
, and
Schmitt
,
M.
,
2016
, “
Statistical Contact Angle Analyses With the High-Precision Drop Shape Analysis (HPDSA) Approach: Basic Principles and Applications
,”
Coatings
,
6
(
4
), p.
57
.10.3390/coatings6040057
31.
Washburn
,
E. W.
,
1921
, “
The Dynamics of Capillary Flow
,”
Phys. Rev.
,
17
(
3
), pp.
273
283
.10.1103/PhysRev.17.273
32.
Engel
,
O. G.
,
1955
, “
Waterdrop Collisions With Solid Surfaces
,”
J. Res. Natl. Bur. Stand. (1934)
,
54
(
5
), pp.
281
298
.10.6028/jres.054.033
33.
Kwak
,
G.
,
Lee
,
M.
,
Senthil
,
K.
, and
Yong
,
K.
,
2009
, “
Impact Dynamics of Water Droplets on Chemically Modified WO x Nanowire Arrays
,”
Appl. Phys. Lett.
,
95
(
15
), p.
153101
.10.1063/1.3244597
34.
Richard
,
D.
,
Clanet
,
C.
, and
Quéré
,
D.
,
2002
, “
Contact Time of a Bouncing Drop
,”
Nat.
,
417
(
6891
), pp.
811
811
.10.1038/417811a
You do not currently have access to this content.