Abstract

Serpentine channels are a common feature seen in heat ex-changer geometries. For example, they are present in midchord regions of gas turbine blades to prevent material failure at high turbine inlet temperatures. Due to their serpentine nature, these channels contain 180 deg turns or U-bends. These U-bends are responsible for nearly 20% of the pressure drop in such channels (Verstraete et al., 2013, “Optimization of a U-Bend for Minimal Pressure Loss in Internal Cooling Channels-Part I: Numerical Method,” ASME J. Turbomach., 135(5), p. 051015). A topology optimization (TO) method has been used in this study to optimize the shape of a baseline U-bend for minimum pressure drop, at a Reynolds number of 17,000. TO uses a variable permeability approach to design an optimum flow-path by manipulation of solid blockage distribution in the flow-path. The pressure drop across the channel was lowered by 50% when compared to a standard U-bend channel profile from literature. Postprocessing was performed to extract the flow-path and run a forward simulation in star-ccm+ after remeshing with wall refinement. A 3D printed model of the TO shape and benchmark U-bend was created using acrylonitrile butadiene styrene as the printing material, to confirm the results of the turbulent fluid TO, which is a relatively untouched topic in current TO literature. Experimental results showed deviation from computational fluid dynamics (CFD) by about 5%. Comparison of the TO optimum was carried out with an in-house parametric shape optimization using surrogate model-based Bayesian optimization (BO) and a similar shape optimization study from literature. A higher reduction in pressure drop was seen in the case of the TO geometry when compared to the benchmark and the BO cases.

References

1.
Bunker
,
R. S.
,
2017
, “
Evolution of Turbine Cooling
,”
ASME
Paper No. GT2017-63205.10.1115/GT2017-63205
2.
Dean
,
W. R.
,
1927
, “
Xvi. Note on the Motion of Fluid in a Curved Pipe
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
4
(
20
), pp.
208
223
.10.1080/14786440708564324
3.
Metzger
,
D. E.
,
Plevich
,
C. W.
, and
Fan
,
C. S.
,
1984
, “
Pressure Loss Through Sharp 180 Deg Turns in Smooth Rectangular Channels
,”
ASME J. Eng. Gas Turbines Power
,
106
(
3
), pp.
677
681
.10.1115/1.3239623
4.
Son
,
S.
,
Kihm
,
K.
, and
Han
,
J.-C.
,
2002
, “
PIV Flow Measurements for Heat Transfer Characterization in Two-Pass Square Channels With Smooth and 90° Ribbed Walls
,”
Int. J. Heat Mass Transfer
,
45
(
24
), pp.
4809
4822
.10.1016/S0017-9310(02)00192-8
5.
Liou
,
T.-M.
,
Tzeng
,
Y.-Y.
, and
Chen
,
C.-C.
,
1999
, “
Fluid Flow in a 180 Deg Sharp Turning Duct With Different Divider Thicknesses
,”
ASME J. Turbomach.
,
121
(
3
), pp.
569
576
.10.1115/1.2841354
6.
Chu
,
H.-C.
,
Chen
,
H.-C.
, and
Han
,
J.-C.
,
2018
, “
Numerical Simulation of Flow and Heat Transfer in Rotating Cooling Passage With Turning Vane in Hub Region
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
2
), p. 021701.10.1115/1.4037498
7.
Schüler
,
M.
,
Zehnder
,
F.
,
Weigand
,
B.
,
von Wolfersdorf
,
J.
, and
Neumann
,
S. O.
,
2011
, “
The Effect of Turning Vanes on Pressure Loss and Heat Transfer of a Ribbed Rectangular Two-Pass Internal Cooling Channel
,”
ASME J. Turbomach.
,
133
(
2
), p.
021017
.10.1115/1.4000550
8.
Valsala
,
R. R.
,
Son
,
S.
,
Suryan
,
A.
, and
Kim
,
H. D.
,
2019
, “
Study on Reduction in Pressure Losses in Pipe Bends Using Guide Vanes
,”
J. Visual.
,
22
(
4
), pp.
795
807
.10.1007/s12650-019-00561-w
9.
Sleiti
,
A. K.
, and
Kapat
,
J. S.
,
2004
, “
Comparison Between EVM and RSM Turbulence Models in Predicting Flow and Heat Transfer in Rib-Roughened Channels
,”
Parts A and B of Heat Transfer Summer Conference
, Volume 2, pp.
531
542
.
10.
Sewall
,
E. A.
, and
Tafti
,
D. K.
,
2005
, “
Large Eddy Simulation of Flow and Heat Transfer in the 180° Bend Region of a Stationary Ribbed Gas Turbine Internal Cooling Duct
,” Parts A and B of
Turbo Expo: Power for Land, Sea, and Air
, Volume
3
: Turbo Expo, Reno, NV, pp.
481
493
.
11.
Otto
,
M.
,
Hodges
,
J.
,
Gupta
,
G.
, and
Kapat
,
J. S.
, “
Vortical Structures in Pin Fin Arrays for Turbine Cooling Applications
,”
ASME
Paper No. GT2019-90552.10.1115/GT2019-90552
12.
Verstraete
,
T.
,
Coletti
,
F.
,
Bulle
,
J.
,
Vanderwielen
,
T.
, and
Arts
,
T.
,
2013
, “
Optimization of a U-Bend for Minimal Pressure Loss in Internal Cooling Channels-Part I: Numerical Method
,”
ASME J. Turbomach.
,
135
(
5
), p. 051015.10.1115/1.4023030
13.
Coletti
,
F.
,
Verstraete
,
T.
,
Bulle
,
J.
,
Van der Wielen
,
T.
,
Van den Berge
,
N.
, and
Arts
,
T.
,
2013
, “
Optimization of a U-Bend for Minimal Pressure Loss in Internal Cooling Channels-Part II: Experimental Validation
,”
ASME J. Turbomach.
,
135
(
5
), p.
051016
.10.1115/1.4023031
14.
Ghosh
,
S.
, and
Kapat
,
J. S.
,
2019
, “
Topology Optimization of Serpentine Channels for Minimization of Pressure Loss and Maximization of Heat Transfer Performance as Applied for Additive Manufacturing
,”
Heat Transfer of Turbo Expo: Power for Land, Sea, and Air
, Volume
5B
, Phoenix, AZ.
15.
Dilgen
,
S. B.
,
Dilgen
,
C. B.
,
Fuhrman
,
D. R.
,
Sigmund
,
O.
, and
Lazarov
,
B. S.
,
2018
, “
Density Based Topology Optimization of Turbulent Flow Heat Transfer Systems
,”
Struct. Multidiscip. Optim.
,
57
(
5
), pp.
1905
1918
.10.1007/s00158-018-1967-6
16.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.10.1016/0045-7825(88)90086-2
17.
Dbouk
,
T.
,
2017
, “
A Review About the Engineering Design of Optimal Heat Transfer Systems Using Topology Optimization
,”
Appl. Therm. Eng.
,
112
, pp.
841
854
.10.1016/j.applthermaleng.2016.10.134
18.
Alexandersen
,
J.
, and
Andreasen
,
C.
,
2020
, “
A Review of Topology Optimisation for Fluid-Based Problems
,”
Fluids
,
5
(
1
), p.
29
.10.3390/fluids5010029
19.
Borrvall
,
T.
, and
Petersson
,
J.
,
2003
, “
Topology Optimization of Fluids in Stokes Flow
,”
Int. J. Numer. Methods Fluids
,
41
(
1
), pp.
77
107
.10.1002/fld.426
20.
Gersborg-Hansen
,
A.
,
Sigmund
,
O.
, and
Haber
,
R.
,
2005
, “
Topology Optimization of Channel Flow Problems
,”
Struct. Multidiscip. Optim.
,
30
(
3
), pp.
181
192
.10.1007/s00158-004-0508-7
21.
Wiker
,
N.
,
Klarbring
,
A.
, and
Borrvall
,
T.
,
2007
, “
Topology Optimization of Regions of Darcy and Stokes Flow
,”
Int. J. Numer. Methods Eng.
,
69
(
7
), pp.
1374
1404
.10.1002/nme.1811
22.
Guest
,
J. K.
, and
Smith Genut
,
L. C.
,
2010
, “
Reducing Dimensionality in Topology Optimization Using Adaptive Design Variable Fields
,”
Int. J. Numer. Methods Eng.
,
81
(
8
), pp.
1019
1045
.10.1002/nme.2724
23.
Bruns
,
T.
,
2007
, “
Topology Optimization by Penalty (Top) Method
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
45–48
), pp.
4430
4443
.10.1016/j.cma.2007.04.016
24.
Yaji
,
K.
,
Yamada
,
T.
,
Yoshino
,
M.
,
Matsumoto
,
T.
,
Izui
,
K.
, and
Nishiwaki
,
S.
,
2014
, “
Topology Optimization Using the Lattice Boltzmann Method Incorporating Level Set Boundary Expressions
,”
J. Comput. Phys.
,
274
, pp.
158
181
.10.1016/j.jcp.2014.06.004
25.
Zhou
,
S.
, and
Li
,
Q.
,
2008
, “
A Variational Level Set Method for the Topology Optimization of Steady-State Navier–Stokes Flow
,”
J. Comput. Phys.
,
227
(
24
), pp.
10178
10195
.10.1016/j.jcp.2008.08.022
26.
Challis
,
V. J.
, and
Guest
,
J. K.
,
2009
, “
Level Set Topology Optimization of Fluids in Stokes Flow
,”
Int. J. Numer. Methods Eng.
,
79
(
10
), pp.
1284
1308
.10.1002/nme.2616
27.
Yoshimura
,
M.
,
Shimoyama
,
K.
,
Misaka
,
T.
, and
Obayashi
,
S.
,
2017
, “
Topology Optimization of Fluid Problems Using Genetic Algorithm Assisted by the Kriging Model
,”
Int. J. Numer. Methods Eng.
,
109
(
4
), pp.
514
532
.10.1002/nme.5295
28.
Othmer
,
C.
,
2008
, “
A Continuous Adjoint Formulation for the Computation of Topological and Surface Sensitivities of Ducted Flows
,”
Int. J. Numer. Methods Fluids
,
58
(
8
), pp.
861
877
.10.1002/fld.1770
29.
Ghosh
,
S.
, and
Kapat
,
J. S.
,
2020
, “
Topology Optimization of High Aspect Ratio Internal Cooling Channels as a Design for Additive Manufacturing
,” Volume 7A:
Heat Transfer Turbo Expo: Power Land, Sea, Air
, London, UK.
30.
Pietropaoli
,
M.
,
Ahlfeld
,
R.
,
Montomoli
,
F.
,
Ciani
,
A.
, and
D'Ercole
,
M.
,
2017
, “
Design for Additive Manufacturing: Internal Channel Optimization
,”
ASME J. Eng. Gas Turbines Power
,
139
(
10
), p.
102101
.10.1115/1.4036358
31.
Kontoleontos
,
E.
,
Papoutsis-Kiachagias
,
E.
,
Zymaris
,
A.
,
Papadimitriou
,
D.
, and
Giannakoglou
,
K.
,
2013
, “
Adjoint-Based Constrained Topology Optimization for Viscous Flows, Including Heat Transfer
,”
Eng. Optim.
,
45
(
8
), pp.
941
961
.10.1080/0305215X.2012.717074
32.
Philippi
,
B.
, and
Jin
,
Y.
,
2015
, “
Topology Optimization of Turbulent Fluid Flow With a Sensitive Porosity Adjoint Method (Spam)
,” arXiv preprint arXiv:1512.08445.
33.
Jin
,
Y.
,
Uth
,
M.
,
Kuznetsov
,
A.
, and
Herwig
,
H.
,
2015
, “
Numerical Investigation of the Possibility of Macroscopic Turbulence in Porous Media: A Direct Numerical Simulation Study
,”
J. Fluid Mech.
,
766
, pp.
76
103
.10.1017/jfm.2015.9
34.
Dede
,
E. M.
,
Joshi
,
S. N.
, and
Zhou
,
F.
,
2015
, “
Topology Optimization, Additive Layer Manufacturing, and Experimental Testing of an Air-Cooled Heat Sink
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111403
.10.1115/1.4030989
35.
Ruiz
,
A.
,
Fezzaa
,
K.
,
Kapat
,
J.
, and
Bhattacharya
,
S.
,
2020
, “
Measurements of the Flow in the Vicinity of an Additively Manufactured Turbine Leading-Edge Using x-Ray Particle Tracking Velocimetry
,”
ASME J. Fluids Eng.
,
142
(
5
), p.
051502
.10.1115/1.4045496
36.
Calderon
,
L.
,
Curbelo
,
A.
,
Gupta
,
G.
, and
Kapat
,
J. S.
,
2018
, “
Adiabatic Film Cooling Effectiveness of a Lam Fabricated Porous Leading Edge Segment of a Turbine Blade
,”
ASME
Paper No. GT2018-77114.10.1115/GT2018-77114
37.
Liu
,
C.
,
Guo
,
M.
,
Yan
,
Q.
,
Wei
,
W.
, and
Wood
,
H. G.
,
2020
, “
Parametric Analysis and Optimization of Leaning Angle in Torque Converters
,”
ASME J. Fluids Eng.
,
142
(
10
), p.
101208
.10.1115/1.4047412
38.
Maral
,
H.
,
Şenel
,
C. B.
,
Deveci
,
K.
,
Alpman
,
E.
,
Kavurmacıoğlu
,
L.
, and
Camci
,
C.
,
2020
, “
A Genetic Algorithm Based Multi-Objective Optimization of Squealer Tip Geometry in Axial Flow Turbines: A Constant Tip Gap Approach
,”
ASME J. Fluids Eng.
,
142
(
2
), p.
021402
.10.1115/1.4044721
39.
Iliev
,
I.
,
Tengs
,
E. O.
,
Trivedi
,
C.
, and
Dahlhaug
,
O. G.
,
2020
, “
Optimization of Francis Turbines for Variable Speed Operation Using Surrogate Modeling Approach
,”
ASME J. Fluids Eng.
,
142
(
10
), p.
101214
.10.1115/1.4047675
40.
Ghosh
,
S.
,
Mondal
,
S.
,
Fernandez
,
E.
,
Kapat
,
J. S.
, and
Roy
,
A.
,
2020
, “
Parametric Shape Optimization of Pin-Fin Arrays Using a Surrogate Model-Based Bayesian Method
,”
J. Thermophys. Heat Transfer
,
35
, pp.
1
11
.
41.
Ghosh
,
S.
,
Mondal
,
S.
,
Fernandez
,
E.
,
Kapat
,
J. S.
, and
Roy
,
A.
,
2020
, “
Shape Optimization of Pin Fin Arrays Using Gaussian Process Surrogate Models Under Design Constraints
,”
ASME
Paper No. GT2020-15277.10.1115/GT2020-15277
42.
Patankar
,
S.
,
2018
,
Numerical Heat Transfer and Fluid Flow
,
CRC Press
, Boca Raton, FL.
43.
Bell
,
J. H.
, and
Mehta
,
R. D.
,
1988
, “
Contraction Design for Small Low-Speed Wind Tunnels
,” NASA STI/Recon, Stanford University, Stanford, CA, Report No. JIAA TR-84.
44.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
2000
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
42
(
1
), pp.
55
61
.10.1080/00401706.2000.10485979
You do not currently have access to this content.