Abstract

As a metal three-dimensional (3D) printing technology, selective laser melting (SLM) has been extensively applied to manufacture complex-shaped parts in industries. It is well known that the naturally formed surface by SLM processing is usually rough and irregular. The effects of the rough surface on heat transfer and fluid flow cannot be neglected when SLM is applied to fields such as heat exchangers and cooling equipment. In this paper, a novel bottom-up approach was proposed to build the naturally formed rough surface by SLM 3D printing. Numerical investigation on pressure loss and heat transfer characteristics of rectangular channels has been carried out based on the naturally formed rough model. Constant thermal boundary and symmetry boundary conditions were employed in the procedure of numerical computation. For comparison, a variety of typical surfaces with different roughness elements in previous studies have been introduced and analyzed. Results confirmed that the proposed rough surface modeling method was fully capable of descripting the real 3D-printed surface topography. Compared with the smooth surface, the heat transfer capacity of the 3D-printed rough channel was increased by 8.99%, while the pressure loss was increased by 25.02%. Additionally, 3D-printed rough surface had better overall thermal performance compared to rough surfaces with regular roughness element.

References

1.
Chen
,
Y.
,
Zhang
,
C.
,
Shi
,
M.
, and
Yang
,
Y.
,
2009
, “
Thermal and Hydrodynamic Characteristics of Constructal Tree-Shaped Minichannel Heat Sink
,”
AiChe J.
,
56
(
8
), pp.
NA
2029
.10.1002/aic.12135
2.
Fasano
,
M.
,
Ventola
,
L.
,
Calignano
,
F.
,
Manfredi
,
D.
,
Ambrosio
,
E. P.
,
Chiavazzo
,
E.
, and
Asinari
,
P.
,
2016
, “
Passive Heat Transfer Enhancement by 3D Printed Pitot Tube Based Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
74
, pp.
36
39
.10.1016/j.icheatmasstransfer.2016.03.012
3.
Wang
,
G.
,
Gu
,
Y.
,
Zhao
,
L.
,
Xuan
,
J.
,
Zeng
,
G.
,
Tang
,
Z.
, and
Sun
,
Y.
,
2019
, “
Experimental and Numerical Investigation of Fractal-Tree-Like Heat Exchanger Manufactured by 3D Printing
,”
Chem. Eng. Sci.
,
195
, pp.
250
261
.10.1016/j.ces.2018.07.021
4.
Eom
,
R.-i.
,
Lee
,
H.
, and
Lee
,
Y.
,
2019
, “
Evaluation of Thermal Properties of 3D Spacer Technical Materials in Cold Environments Using 3D Printing Technology
,”
Polymers
,
11
(
9
), p.
1438
.10.3390/polym11091438
5.
Wei
,
C.
,
Diaz
,
G. A. V.
,
Wang
,
K.
, and
Li
,
P.
,
2020
, “
3D-Printed Tubes With Complex Internal Fins for Heat Transfer enhancement-CFD Analysis and Performance Evaluation
,”
Aims Energy
,
8
(
1
), pp.
27
47
.10.3934/energy.2020.1.27
6.
Mala
,
G. M.
, and
Li
,
D. Q.
,
1999
, “
Flow Characteristics of Water in Microtubes
,”
Int. J. Heat Fluid Flow
,
20
(
2
), pp.
142
148
.10.1016/S0142-727X(98)10043-7
7.
Qu
,
W. L.
,
Mala
,
G. M.
, and
Li
,
D. Q.
,
2000
, “
Pressure-Driven Water Flows in Trapezoidal Silicon Microchannels
,”
Int. J. Heat Mass Transfer
,
43
(
3
), pp. 353–364.10.1016/S0017-9310(99)00148-9
8.
Qu
,
W. L.
,
Mala
,
G. M.
, and
Li
,
D. Q.
,
2000
, “
Heat Transfer for Water Flow in Trapezoidal Silicon Microchannels
,”
Int. J. Heat Mass Transfer
,
43
(
21
), pp.
3925
3936
.10.1016/S0017-9310(00)00045-4
9.
Huang
,
K.
,
Wan
,
J. W.
,
Chen
,
C. X.
,
Li
,
Y. Q.
,
Mao
,
D. F.
, and
Zhang
,
M. Y.
,
2013
, “
Experimental Investigation on Friction Factor in Pipes With Large Roughness
,”
Exp. Therm. Fluid Sci.
,
50
, pp.
147
153
.10.1016/j.expthermflusci.2013.06.002
10.
Huang
,
K.
,
Wan
,
J. W.
,
Chen
,
C. X.
,
Mao
,
D. F.
, and
Li
,
Y. Q.
,
2013
, “
Experiments Investigation of the Effects of Surface Roughness on Laminar Flow in Macro Tubes
,”
Exp. Therm. Fluid Sci.
,
45
, pp.
243
248
.10.1016/j.expthermflusci.2012.10.022
11.
Sahu
,
M. K.
, and
Prasad
,
R. K.
,
2016
, “
A Review of the Thermal and Hydrodynamic Performance of Solar Air Heater With Roughened Absorber Plates
,”
J. Enhan. Heat Transfer
,
23
(
1
), pp.
47
89
.10.1615/JEnhHeatTransf.2017015624
12.
Alam
,
T.
, and
Kim
,
M.-H.
,
2017
, “
A Critical Review on Artificial Roughness Provided in Rectangular Solar Air Heater Duct
,”
Renewable Sustainable Energy Rev.
,
69
, pp.
387
400
.10.1016/j.rser.2016.11.192
13.
Ventola
,
L.
,
Robotti
,
F.
,
Dialameh
,
M.
,
Calignano
,
F.
,
Manfredi
,
D.
,
Chiavazzo
,
E.
, and
Asinari
,
P.
,
2014
, “
Rough Surfaces With Enhanced Heat Transfer for Electronics Cooling by Direct Metal Laser Sintering
,”
Int. J. Heat Mass Transfer
,
75
, pp.
58
74
.10.1016/j.ijheatmasstransfer.2014.03.037
14.
Kirsch
,
K. L.
, and
Thole
,
K. A.
,
2017
, “
Pressure Loss and Heat Transfer Performance for Additively and Conventionally Manufactured Pin Fin Arrays
,”
Int. J. Heat Mass Transfer
,
108
, pp.
2502
2513
.10.1016/j.ijheatmasstransfer.2017.01.095
15.
Yeom
,
T.
,
Simon
,
T.
,
Zhang
,
T.
,
Zhang
,
M.
,
North
,
M.
, and
Cui
,
T.
,
2016
, “
Enhanced Heat Transfer of Heat Sink Channels With Micro Pin Fin Roughened Walls
,”
Int. J. Heat Mass Transfer
,
92
, pp.
617
627
.10.1016/j.ijheatmasstransfer.2015.09.014
16.
Miyake
,
Y.
,
Tsujimoto
,
K.
, and
Nakaji
,
M.
,
2001
, “
Direct Numerical Simulation of Rough-Wall Heat Transfer in a Turbulent Channel Flow
,”
Int. J. Heat Fluid Flow
,
22
(
3
), pp.
237
244
.10.1016/S0142-727X(01)00085-6
17.
Kumar
,
R.
,
Geol
,
V.
, and
Kumar
,
A.
,
2017
, “
A Parametric Study of the 2D Model of Solar Air Heater With Elliptical Rib Roughness Using CFD
,”
J. Mech. Sci. Technol.
,
31
(
2
), pp.
959
964
.10.1007/s12206-017-0148-7
18.
Gaur
,
R.
,
Sabbani
,
G.
, and
Prasad
,
B. V. S. S. S.
,
2019
, “
A Computational Study of Flow and Heat Transfer in a Channel With an Array of Novel Surface Roughness Element
,”
J. Enhan. Heat Transfer
,
26
(
2
), pp.
145
166
.10.1615/JEnhHeatTransf.2018026911
19.
Kuwata
,
Y.
, and
Kawaguchi
,
Y.
,
2019
, “
Direct Numerical Simulation of Turbulence Over Resolved and Modeled Rough Walls With Irregularly Distributed Roughness
,”
Int. J. Heat Fluid Flow
,
77
, pp.
1
18
.10.1016/j.ijheatfluidflow.2019.02.009
20.
Croce
,
G.
,
D'agaro
,
P.
, and
Nonino
,
C.
,
2007
, “
Three-Dimensional Roughness Effect on Microchannel Heat Transfer and Pressure Drop
,”
Int. J. Heat Mass Transfer
,
50
(
25–26
), pp.
5249
5259
.10.1016/j.ijheatmasstransfer.2007.06.021
21.
Dharaiya
,
V. V.
, and
Kandlikar
,
S. G.
,
2013
, “
A Numerical Study on the Effects of 2d Structured Sinusoidal Elements on Fluid Flow and Heat Transfer at Microscale
,”
Int. J. Heat Mass Transfer
,
57
(
1
), pp.
190
201
.10.1016/j.ijheatmasstransfer.2012.10.004
22.
Kharati-Koopaee
,
M.
, and
Zare
,
M.
,
2015
, “
Effect of Aligned and Offset Roughness Patterns on the Fluid Flow and Heat Transfer Within Microchannels Consist of Sinusoidal Structured Roughness
,”
Int. J. Therm. Sci.
,
90
, pp.
9
23
.10.1016/j.ijthermalsci.2014.11.031
23.
Guo
,
L.
,
Xu
,
H.
, and
Gong
,
L.
,
2015
, “
Influence of Wall Roughness Models on Fluid Flow and Heat Transfer in Microchannels
,”
Appl. Therm. Eng.
,
84
, pp.
399
408
.10.1016/j.applthermaleng.2015.04.001
24.
Pelevic
,
N.
, and
van der Meer
,
T. H.
,
2016
, “
Heat Transfer and Pressure Drop in Microchannels With Random Roughness
,”
Int. J. Therm. Sci.
,
99
, pp.
125
135
.10.1016/j.ijthermalsci.2015.08.012
25.
Hanson
,
D. R.
,
Kinzel
,
M. P.
, and
McClain
,
S. T.
,
2019
, “
Validation of the Discrete Element Roughness Method for Predicting Heat Transfer on Rough Surfaces
,”
Int. J. Heat Mass Transfer
,
136
, pp.
1217
1232
.10.1016/j.ijheatmasstransfer.2019.03.062
26.
Dierich
,
F.
, and
Nikrityuk
,
P. A.
,
2013
, “
A Numerical Study of the Impact of Surface Roughness on Heat and Fluid Flow Past a Cylindrical Particle
,”
Int. J. Therm. Sci.
,
65
, pp.
92
103
.10.1016/j.ijthermalsci.2012.08.009
27.
Gamrat
,
G.
,
Favre-Marinet
,
M.
, and
Le Person
,
S.
,
2009
, “
Modelling of Roughness Effects on Heat Transfer in Thermally Fully-Developed Laminar Flows Through Microchannels
,”
Int. J. Therm. Sci.
,
48
(
12
), pp.
2203
2214
.10.1016/j.ijthermalsci.2009.04.006
28.
Zhou
,
G.
, and
Yao
,
S.-C.
,
2011
, “
Effect of Surface Roughness on Laminar Liquid Flow in Micro-Channels
,”
Appl. Therm. Eng.
,
31
(
2–3
), pp.
228
234
.10.1016/j.applthermaleng.2010.09.002
29.
Alam
,
T.
, and
Kim
,
M.-H.
,
2017
, “
Heat Transfer Enhancement in Solar Air Heater Duct With Conical Protrusion Roughness Ribs
,”
Appl. Therm. Eng.
,
126
, pp.
458
469
.10.1016/j.applthermaleng.2017.07.181
30.
Lu
,
H.
,
Xu
,
M.
,
Gong
,
L.
,
Duan
,
X.
, and
Chai
,
J. C.
,
2020
, “
Effects of Surface Roughness in Microchannel With Passive Heat Transfer Enhancement Structures
,”
Int. J. Heat Mass Transfer
,
148
, p.
119070
.10.1016/j.ijheatmasstransfer.2019.119070
31.
Chen
,
Y.
,
Zhang
,
C.
,
Shi
,
M.
, and
Peterson
,
G. P.
,
2010
, “
Optimal Surface Fractal Dimension for Heat and Fluid Flow in Microchannels
,”
Appl. Phys. Lett.
,
97
(
8
), p.
084101
.10.1063/1.3481379
32.
Wu
,
S.
,
Cheng
,
Q.
,
Peng
,
Q.
, and
Shen
,
C.
,
2019
, “
Molecular Dynamics Study on Liquid Film Evaporation on the Fractal Rough Surfaces
,”
Fract. Compl. Geomet. Patt. Scaling Nat. Soc.
,
27
(
5
), p.
1950081
.10.1142/S0218348X19500816
33.
Chen
,
Y.
,
Fu
,
P.
,
Zhang
,
C.
, and
Shi
,
M.
,
2010
, “
Numerical Simulation of Laminar Heat Transfer in Microchannels With Rough Surfaces Characterized by Fractal Cantor Structures
,”
Int. J. Heat Fluid Flow
,
31
(
4
), pp.
622
629
.10.1016/j.ijheatfluidflow.2010.02.017
34.
Deng
,
Y.
,
Miao
,
N.
,
Liu
,
Y.
,
Zhai
,
X.
, and
Wu
,
D.
,
2019
, “
Investigation on Cooling Efficiency of a 3D-Printed Integrated Inter Cooler Applicable to a Miniature Multi-Stage Compressor
,”
Int. J. Refrig.
,
100
, pp.
295
306
.10.1016/j.ijrefrig.2019.02.012
35.
Liu
,
Y.
,
Miao
,
N.
,
Deng
,
Y.
, and
Wu
,
D.
,
2019
, “
Efficiency Evaluation of a Miniature Multi-Stage Compressor Under Insufficient Inter-Stage Cooling Conditions
,”
Int. J. Refrig.
,
97
, pp.
169
179
.10.1016/j.ijrefrig.2018.09.009
36.
Siw
,
S. C.
,
Chyu
,
M. K.
,
Shih
,
T. I. P.
, and
Alvin
,
M. A.
,
2012
, “
Effects of Pin Detached Space on Heat Transfer and Pin-Fin Arrays
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
8
), p. 081902.10.1115/1.4006166
37.
Gnielinski
,
V. J. I. C. E.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,” Int. Chem. Eng.,
16
(
2
), pp.
359
368
.
You do not currently have access to this content.