Abstract

The injection of choked gaseous jets into the still air is investigated experimentally motivated by many industrial applications including flares and burners. The objective is to study the effect of injection angle on the jet mixing with ambient air. The experimental methods consist of particle image velocimetry (PIV) using pulsed Nd:YAG lasers of a choked gas jet, seeded with aluminum oxide particles, injected into the still air, seeded with water fog. The computational methods consisted of 7.7 × 106 cells simulation using starccm+. The test conditions include injection angles of 0 deg, 15 deg, and 30 deg. The results including mean and fluctuating velocities and the flow vorticity are presented. The flow field is not symmetric along the injection axis due to the asymmetric triggering of expansion fans. Moreover, the numerical simulation reveals the complex interaction mechanism of the expansion fans and shockwaves within the injection port.

References

1.
Ouellette
,
P.
, and
Hill
,
P. G.
,
2000
, “
Turbulent Transient Gas Injections
,”
ASME J. Fluids Eng.
,
122
(
4
), pp.
743
752
.10.1115/1.1319845
2.
Emami
,
B.
,
Bussmann
,
M.
, and
Tran
,
H.
,
2010
, “
Application of Realizability and Shock Unsteadiness to k−ε Simulations of Under-Expanded Axisymmetric Supersonic Free Jets
,”
ASME J. Fluids Eng.
,
132
(
4
), p.
041104
.10.1115/1.4001341
3.
Chin
,
C.
,
Li
,
M.
,
Harkin
,
C.
, Rochwerger, T., Chan, L., Ooi, A., Risborg, A.,
2013
, “
Investigation of the Flow Structures in Supersonic Free and Impinging Jet Flows
,”
ASME J. Fluids Eng.
,
135
(
3
), p.
031202
. 10.1115/1.4023190
4.
Yoshimaru
,
T.
,
Asako
,
Y.
, and
Yamada
,
T.
,
2014
, “
Under-Expanded Gaseous Flow at a Straight Micro-Tube Exit
,”
ASME J. Fluids Eng.
,
136
(
8
), p.
081204
.10.1115/1.4026958
5.
Zhang
,
L.
,
Ruan
,
W. J.
,
Wang
,
H.
, and
Wang
,
P. X.
,
2016
, “
Numerical Simulation of Supersonic Gas Jet Flows and Acoustic Fields
,”
Int. J. Mech., Aerosp. Ind. Mechatronic Manuf. Eng.
,
10
(
2
), pp.
232
236
.10.5281/zenodo.1338680
6.
Zakrzewski
,
S.
,
Milton
,
B. E.
,
Pianthong
,
K.
, and
Behnia
,
M.
,
2004
, “
Supersonic Liquid Fuel Jets Injected Into Quiescent Air
,”
Int. J. Heat Fluid Flow
,
25
(
5
), pp.
833
840
.10.1016/j.ijheatfluidflow.2004.05.010
7.
Wang
,
G. L.
, and
Lu
,
X. Y.
,
2011
, “
Effects of the Jet-to-Crossflow Momentum Ratio on a Sonic Jet Into a Supersonic Crossflow
,”
Theor. Appl. Mech. Lett.
,
1
(
1
), p.
012005
.10.1063/2.1101205
8.
Vuorinen
,
V.
,
Yu
,
J.
,
Tirunagari
,
S.
,
Kaario
,
O.
,
Larmi
,
M.
,
Duwig
,
C.
, and
Boersma
,
B. J.
,
2013
, “
Large-Eddy Simulation of Highly Underexpanded Transient Gas Jets
,”
Phys. Fluids (1994-Present)
,
25
(
1
), p.
016101
.10.1063/1.4772192
9.
Fu
,
D.
,
Yu
,
Y.
, and
Niu
,
Q.
,
2014
, “
Simulation of Underexpanded Supersonic Jet Flows With Chemical Reactions
,”
Chin. J. Aeronaut.
,
27
(
3
), pp.
505
513
.10.1016/j.cja.2014.04.003
10.
Thanigaiarasu
,
S.
,
Karthick
,
R.
,
Arunprasad
,
R.
,
SyedMusthafa
,
H.
,
Elangovan
,
S.
, and
Rathakrishnan
,
E.
,
2013
, “
Study of Underexpanded Sonic Jets by Numerical Simulation
,”
Int. J. Turbo Jet-Eng.
,
30
(
1
), pp.
101
109
.10.1515/tjj-2012-0023
11.
Baek
,
S.-C.
,
Kwon
,
S.-B.
,
Kim
,
H.-D.
,
Setoguchi
,
T.
, and
Matsuo
,
S.
,
2006
, “
Study of Moderately Underexpanded Supersonic Moist Air Jets
,”
AIAA J.
,
44
(
7
), pp.
1624
1627
.10.2514/1.10029
12.
White
,
T. R.
, and
Milton
,
B. E.
,
2008
, “
Shock Wave Calibration of Under-Expanded Natural Gas Fuel Jets
,”
Shock Waves
,
18
(
5
), pp.
353
364
.10.1007/s00193-008-0158-6
13.
Spotts
,
N.
,
Guzik
,
S.
, and
Gao
,
X.
,
2013
, “
A CFD Analysis of Compressible Flow Through Convergent-Conical Nozzles
,”
AIAA
Paper No. 2013-3734.10.2514/6.2013-3734
14.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1994
, “
A New k-ϵ Eddy Viscosity Model for High Reynolds Number Turbulent Flows—Model Development and Validation
,” NASA, Cleveland, OH, Report No. ICOMP
94
21
.
15.
Gopalakrishnan
,
R. N.
, and
Disimile
,
P. J.
,
2017
, “
Effect of Turbulence Model in Numerical Simulation of Single Round Jet at Low Reynolds Number
,”
Int. J. Comput. Eng. Res.
,
7
(
7
), pp.
2250
3005
.http://www.ijceronline.com/papers/Vol7_issue3/F07032944.pdf
16.
Gousseau
,
P.
,
Blocken
,
B.
,
Stathopoulos
,
T.
, and
van Heijst
,
G. J. F.
,
2011
, “
CFD Simulation of Near-Field Pollutant Dispersion on a High-Resolution Grid: A Case Study by LES and RANS for a Building Group in Downtown Montreal
,”
Atmos. Environ.
,
45
(
2
), pp.
428
438
.10.1016/j.atmosenv.2010.09.065
17.
Melling
,
A.
,
1997
, “
Tracer Particles and Seeding for Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
8
(
12
), pp.
1406
1416
.10.1088/0957-0233/8/12/005
18.
Picano
,
F.
,
Battista
,
F.
,
Troiani
,
G.
, and
Casciola
,
C. M.
,
2011
, “
Dyanmics of PIV Seeding Particles in Turbulent Premixed Flames
,”
Exp. Fluids
,
50
(
1
), pp.
75
88
.10.1007/s00348-010-0896-y
19.
Herrington
,
A. B.
, and
Sallam
,
K. A.
,
2017
,
On PIV Measurements of Diffusion Flames
,
ASTFE Digital Library
, Danbury, CT, pp.
1229
1236
.
20.
Thielicke
,
W.
, and
Stamhuis
,
E. J.
,
2014
, “
PIVLab—Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB
,”
J. Open Research Software
, 2, p. e30.10.5334/jors.bl
21.
John
,
J.
, and
Keith
,
T.
,
2006
,
Gas Dynamics
,
Pearson Education
, Upper Saddle River, NJ
, pp.
260
262
.
22.
Meyer
,
T.
,
1908
, “
Über Zweidimensionale Bewegungsvorgänge in Einem Gas, Das Mit Überschallgeschwindigkeit Strömt
,” Doctoral dissertation,
The University of Göttingen
, Göttingen.
You do not currently have access to this content.