Abstract

Carbonated water drops impact on a hydrophobic surface is examined. The influence of CO2 gas bubbles in droplet fluid on impacting droplet characteristics, such as spreading rates and restitution coefficient, are explored. The predictions of droplet wetting diameter and spreading rates are validated through the experimental data obtained from high-speed recording. The findings reveal that predictions agree well with the experimental data. CO2 gas bubbles in the droplet are compressed by the total impact pressure of the droplet liquid while slightly reducing the gas bubble sizes. The small size of close by bubbles at high pressure can merge forming large size bubbles, which occur toward the end of droplet spreading and retraction periods. The pressure increase in the fluid gives rise to the increased vertical height of the droplet and slightly reduces the droplet contact diameter on the impacted surface. The work done during the compression of CO2 gas in bubbles lowers the restitution coefficient of the droplet after the retraction period.

References

1.
Delele
,
M. A.
,
Nuyttens
,
D.
,
Duga
,
A. T.
,
Ambaw
,
A.
,
Lebeau
,
F.
,
Nicolai
,
B. M.
, and
Verboven
,
P.
,
2016
, “
Predicting the Dynamic Impact Behaviour of Spray Droplets on Flat Plant Surfaces
,”
Soft Matter
,
12
(
34
), pp.
7195
7211
.10.1039/C6SM00933F
2.
Fang
,
L.
, and
Chen
,
G.
,
2019
, “
The Study of Droplet Deformation and Droplet Volume Fraction in an Aero-Engine Bearing Chamber
,”
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
,
233
(
6
), pp.
2264
2277
.10.1177/0954410018777595
3.
Schneider
,
T.
,
Kreutz
,
J.
, and
Chiu
,
D. T.
,
2013
, “
The Potential Impact of Droplet Microfluidics in Biology
,”
Anal. Chem.
,
85
(
7
), pp.
3476
3482
.10.1021/ac400257c
4.
Yilbas
,
B. S.
,
Hassan
,
G.
,
Al-Qahtani
,
H.
,
Al-Sharafi
,
A.
, and
Sahin
,
A. Z.
,
2021
, “
Dust Mitigation by Rolling Water Droplets From Hydrophobic Surfaces
,”
Surf. Interfaces
,
22
, p.
100825
.10.1016/j.surfin.2020.100825
5.
Yilbas
,
B. S.
,
Mohammed
,
A. S.
,
Abubakar
,
A. A.
,
Bahatab
,
S.
,
Al-Qahtani
,
H.
, and
Al-Sharafi
,
A.
,
2021
, “
Sliding Dynamics of a Water Droplet on Silicon Oil Film Surface
,”
ASME J. Fluids Eng.
,
143
(
7
), p.
071405
.10.1115/1.4050347
6.
Choudhuri
,
J. R.
, and
Nath
,
P.
,
2020
, “
Wetting Transition of a Nanodrop on Switchable Hydrophilic-Hydrophobic Surfaces
,”
Surf. Interfaces
,
21
, p.
100628
.10.1016/j.surfin.2020.100628
7.
Abubakar
,
A. A.
,
Yilbas
,
B. S.
,
Hussain A-Qahtani
,
M.
,
Hassan
,
G.
,
Yakubu
,
M.
,
Bahatab
,
S.
, and
Adukwu
,
J. A.
,
2021
, “
Experimental and Model Studies of Various Size Water Droplet Impacting on a Hydrophobic Surface
,”
ASME J. Fluids Eng.
,
143
(
6
), p.
061402
.10.1115/1.4049930
8.
Zenit
,
R.
, and
Rodríguez-Rodríguez
,
J.
,
2018
, “
The Fluid Mechanics of Bubbly Drinks
,”
Phys. Today
,
71
(
11
), pp.
44
50
.10.1063/PT.3.4069
9.
Jing
,
L.
,
Jian
,
L.
, and
Guangneng
,
D.
,
2008
, “
Two-Dimensional Simulation of the Collapse of Vapor Bubbles Near a wall
,”
ASME J. Fluids Eng.
,
130
(
9
), p.
091301
.10.1115/1.2953233
10.
Hamidi
,
A.
,
Oshaghi
,
M.
,
Afshin
,
H.
, and
Firoozabadi
,
B.
,
2020
, “
Experimental Investigation of Various Regimes of Bubble Formation and Growth—A Theoretical View of Double Coalescence Regime
,”
ASME J. Fluids Eng.
,
142
(
4
), p.
041403
.10.1115/1.4045436
11.
Atherton
,
S.
,
Polak
,
D.
,
Hamlett
,
C. A. E.
,
Shirtcliffe
,
N. J.
,
McHale
,
G.
,
Ahn
,
S.
,
Doerr
,
S. H.
,
Bryant
,
R.
, and
Newton
,
M. I.
,
2016
, “
Drop Impact Behaviour on Alternately Hydrophobic and Hydrophilic Layered Bead Packs
,”
Chem. Eng. Res. Des.
,
110
, pp.
200
208
.10.1016/j.cherd.2016.02.011
12.
Xu
,
J.
,
Chen
,
Y.
, and
Xie
,
J.
,
2018
, “
Non-Dimensional Numerical Study of Droplet Impacting on Heterogeneous Hydrophilicity/Hydrophobicity Surface
,”
Int. J. Heat Mass Transfer
,
116
, pp.
951
968
.10.1016/j.ijheatmasstransfer.2017.09.068
13.
Fink
,
V.
,
Cai
,
X.
,
Stroh
,
A.
,
Bernard
,
R.
,
Kriegseis
,
J.
,
Frohnapfel
,
B.
,
Marschall
,
H.
, and
Wörner
,
M.
,
2018
, “
Drop Bouncing by Micro-Grooves
,”
Int. J. Heat Fluid Flow
,
70
, pp.
271
278
.10.1016/j.ijheatfluidflow.2018.02.014
14.
Abubakar
,
A. A.
,
Yilbas
,
B. S.
, and
Al-Qahtani
,
H.
,
2021
, “
A Water Droplet Impact on a Hydrophobic Soft Surface
,”
ASME J. Fluids Eng.
,
143
(
2
), p.
021402
.10.1115/1.4048291
15.
Pittoni
,
P. G.
,
Tsao
,
H.-K.
,
Hung
,
Y.-L.
,
Huang
,
J.-W.
, and
Lin
,
S.-Y.
,
2014
, “
Impingement Dynamics of Water Drops Onto Four Graphite Morphologies: From Triple Line Recoil to Pinning
,”
J. Colloid Interface Sci.
,
417
, pp.
256
263
.10.1016/j.jcis.2013.11.022
16.
Lee
,
J. B.
,
Derome
,
D.
, and
Carmeliet
,
J.
,
2016
, “
Drop Impact on Natural Porous Stones
,”
J. Colloid Interface Sci.
,
469
, pp.
147
156
.10.1016/j.jcis.2016.02.008
17.
Yun
,
S.
,
2018
, “
Impact Dynamics of Egg-Shaped Drops on a Solid Surface for Suppression of the Bounce Magnitude
,”
Int. J. Heat Mass Transfer
,
127
, pp.
172
178
.10.1016/j.ijheatmasstransfer.2018.06.157
18.
Malgarinos
,
I.
,
Nikolopoulos
,
N.
,
Marengo
,
M.
,
Antonini
,
C.
, and
Gavaises
,
M.
,
2014
, “
VOF Simulations of the Contact Angle Dynamics During the Drop Spreading: Standard Models and a New Wetting Force Model
,”
Adv. Colloid Interface Sci.
,
212
, pp.
1
20
.10.1016/j.cis.2014.07.004
19.
Almohammadi
,
H.
, and
Amirfazli
,
A.
,
2019
, “
Droplet Impact: Viscosity and Wettability Effects on Splashing
,”
J. Colloid Interface Sci.
,
553
, pp.
22
30
.10.1016/j.jcis.2019.05.101
20.
Abubakar
,
A. A.
,
Yilbas
,
B. S.
,
Al-Qahtani
,
H.
, and
Hassan
,
G.
,
2020
, “
Carbonated Water Droplet Can Ease Dust Mitigation From Hydrophobic Surfaces
,”
Langmuir
,
36
(
35
), pp.
10504
10518
.10.1021/acs.langmuir.0c01702
21.
Hassan
,
G.
,
Yilbas
,
B. S.
,
Al‐Sharafi
,
A.
,
Sahin
,
A. Z.
, and
Al‐Qahtani
,
H.
,
2020
, “
Solar Energy Harvesting and Self‐Cleaning of Surfaces by an Impacting Water Droplet
,”
Int. J. Energy Res.
,
44
(
1
), pp.
388
401
.10.1002/er.4935
22.
Panchanathan
,
D.
,
Bourrianne
,
P.
,
Varanasi
,
K. K.
, and
McKinley
,
G. H.
,
2019
, “
Reduced Adhesion of Sparkling Water Droplets
,”
Phys. Rev. Fluids
,
4
(
10
), p.
100505
.10.1103/PhysRevFluids.4.100505
23.
Hassan
,
G.
,
Yilbas
,
B. S.
,
Al-Sharafi
,
A.
, and
Al-Qahtani
,
H.
,
2019
, “
Self-Cleaning of a Hydrophobic Surface by a Rolling Water Droplet
,”
Sci. Rep.
,
9
(
1
), p.
5744
.10.1038/s41598-019-42318-3
24.
Yong
,
W. Y. D.
,
Zhang
,
Z.
,
Cristobal
,
G.
, and
Chin
,
W. S.
,
2014
, “
One-Pot Synthesis of Surface Functionalized Spherical Silica Particles
,”
Colloids Surf. A Physicochem. Eng. Asp.
,
460
, pp.
151
157
.10.1016/j.colsurfa.2014.03.039
25.
Heib
,
F.
, and
Schmitt
,
M.
,
2016
, “
Statistical Contact Angle Analyses With the High-Precision Drop Shape Analysis (HPDSA) Approach: Basic Principles and Applications
,”
Coatings
,
6
(
4
), p.
57
.10.3390/coatings6040057
26.
Bhattacharya
,
S.
,
Charonko
,
J. J.
, and
Vlachos
,
P. P.
,
2018
, “
Particle Image Velocimetry (PIV) Uncertainty Quantification Using Moment of Correlation (MC) Plane
,”
Meas. Sci. Technol.
,
29
(
11
), p.
115301
.10.1088/1361-6501/aadfb4
27.
Boyer
,
F.
,
Lapuerta
,
C.
,
Minjeaud
,
S.
,
Piar
,
B.
, and
Quintard
,
M.
,
2010
, “
Cahn–Hilliard/Navier–Stokes Model for the Simulation of Three-Phase Flows
,”
Transp. Porous Media
,
82
(
3
), pp.
463
483
.10.1007/s11242-009-9408-z
28.
Kim
,
J.
,
2012
, “
Phase-Field Models for Multi-Component Fluid Flows
,”
Commun. Comput. Phys.
,
12
(
3
), pp.
613
661
.10.4208/cicp.301110.040811a
29.
George
,
O. A.
,
Xiao
,
J.
,
Rodrigo
,
C. S.
,
Mercadé-Prieto
,
R.
,
Sempere
,
J.
, and
Chen
,
X. D.
,
2017
, “
Detailed Numerical Analysis of Evaporation of a Micrometer Water Droplet Suspended on a Glass Filament
,”
Chem. Eng. Sci.
,
165
, pp.
33
47
.10.1016/j.ces.2017.02.038
30.
Girard
,
A. M.
,
You
,
S.
, and
Garimella
,
S. V.
,
2017
, “
Numerical Simulation of Evaporating Two-Phase Flow in a High-Aspect-Ratio Microchannel With Bends
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
8
), p. 080904.10.1115/1.4036879
31.
Semenov
,
S.
,
Starov
,
V. M.
,
Rubio
,
R. G.
, and
Velarde
,
M. G.
,
2012
, “
Computer Simulations of Evaporation of Pinned Sessile Droplets: Influence of Kinetic Effects
,”
Langmuir
,
28
(
43
), pp.
15203
15211
.10.1021/la303916u
32.
Asibor
,
J. O.
, and
Ighodaro
,
O.
,
2019
, “
Steady State Analysis of Nanofuel Droplet Evaporation
,”
Int. J. Nanosci. Nanotechnol.
,
15
(
3
), pp.
145
155
. http://www.ijnnonline.net/article_36248_4910c8ed743c84382af8ec95052980aa.pdf
33.
Šikalo
,
Š.
,
Wilhelm
,
H.-D.
,
Roisman
,
I. V.
,
Jakirlić
,
S.
, and
Tropea
,
C.
,
2005
, “
Dynamic Contact Angle of Spreading Droplets: Experiments and Simulations
,”
Phys. Fluids
,
17
(
6
), p.
62103
.10.1063/1.1928828
34.
Hu
,
J.
,
Xiong
,
X.
,
Xiao
,
H.
, and
Wan
,
K.
,
2015
, “
Effects of Contact Angle on the Dynamics of Water Droplet Impingement
,”
Proceedings of COMSOL Conference
,
Boston, MD
. https://www.comsol.com/paper/download/256891/hu_paper.pdf
35.
COMSOL
,
2017
, “
COMSOL Multiphysics
,” Burlington, MA.
36.
Lin
,
J.
,
Chen
,
H.
,
Ji
,
Y.
, and
Zhang
,
Y.
,
2012
, “
Functionally Modified Monodisperse Core–Shell Silica Nanoparticles: Silane Coupling Agent as Capping and Size Tuning Agent
,”
Colloids Surf. A Physicochem. Eng. Asp.
,
411
, pp.
111
121
.10.1016/j.colsurfa.2012.06.047
37.
Duncan
,
P. B.
, and
Needham
,
D.
,
2006
, “
Microdroplet Dissolution Into a Second-Phase Solvent Using a Micropipet Technique: Test of the Epstein–Plesset Model for an Aniline–Water System
,”
Langmuir
,
22
(
9
), pp.
4190
4197
.10.1021/la053314e
38.
Park
,
S. H.
,
Park
,
C.
,
Lee
,
J.
, and
Lee
,
B.
,
2017
, “
A Simple Parameterization for the Rising Velocity of Bubbles in a Liquid Pool
,”
Nucl. Eng. Technol.
,
49
(
4
), pp.
692
699
.10.1016/j.net.2016.12.006
39.
Smirnov
,
B. M.
, and
Berry
,
R. S.
,
2015
, “
Growth of Bubbles in Liquid
,”
Chem. Cent. J.
,
9
(
1
), p.
48
.10.1186/s13065-015-0127-y
40.
Liger-Belair
,
G.
,
Prost
,
E.
,
Parmentier
,
M.
,
Jeandet
,
P.
, and
Nuzillard
,
J.-M.
,
2003
, “
Diffusion Coefficient of CO2 Molecules as Determined by 13C NMR in Various Carbonated Beverages
,”
J. Agric. Food Chem.
,
51
(
26
), pp.
7560
7563
.10.1021/jf034693p
41.
Nedderman
,
E. I.
,
2011
, “
Stokes' Law for Solid Spheres and Spherical Bubbles
,”
A-to-Z Guid. Thermodyn. Heat Mass Transfer Fluids Eng.
, epub.10.1615/AtoZ.s.stokes_law_for_solid_spheres_and_spherical_bubbles
42.
Engel
,
O. G.
,
1955
, “
Waterdrop Collisions With Solid Surfaces
,”
J. Res. Natl. Bur. Stand. (1934)
,
54
(
5
), pp.
281
298
.10.6028/jres.054.033
43.
Abubakar
,
A. A.
,
Yilbas
,
B. S.
,
Hassan
,
G.
,
Al-Qahtani
,
H.
,
Ali
,
H.
, and
Al-Sharafi
,
A.
,
2020
, “
Droplet Impacting on a Hydrophobic Surface: Influence of Surface Wetting State on Droplet Behavior
,”
ASME J. Fluids Eng.
,
142
(
7
), p.
071205
.10.1115/1.4046559
You do not currently have access to this content.