Abstract

In this work, we focus on the motility behavior of two model micro-organisms widely used in the study of active fluids: Chlamydomonas reinhardtii micro-alga and Synechocystis sp. cyanobacterium. Understanding the physiological responses of micro-organisms under variable environmental conditions is essential for bioreactor engineering. Yet, most of the previous studies focused on the observation of cellular motility regardless of the growth process. Here, we measure the motility of Chlamydomonas reinhardtii and Synechocystis sp. during their growth when subjected to different intensities of hydrodynamic shear stress. The results demonstrate a significant difference in the motility response of the two species against the applied hydrodynamic shear stress. Mechanical agitation appears to affect the motility of Chlamydomonas reinhardtii micro-algae by stimulating the growth process and increasing the magnitude of the cellular swimming velocity. This effect is described using an empirical model for the time variation of the motility. Synechocystis cells show a high endurance to the applied shear such that the global effect of agitation intensity on their motility is insignificant. However, it seems that the peak of the swimming velocity always occurs in the middle of exponential phase of growth.

References

1.
Bray
,
D.
,
2001
,
Cell Movements: From Molecules to Motility
,
Garland
,
New York
.
2.
Ogiuti
,
K.
,
1936
, “
Untersuchungen Uber Die Geschwindigkeit Der Eigenbewegung Von Bakterien
,”
Jpn. J. exp. Med.
,
14
, pp.
19
28
.
3.
Clowes
,
R. C.
,
Furness
,
G.
, and
Rowley
,
D.
,
1955
, “
The Measurement of Speeds of Motility in Escherichia coli
,”
J. Gen. Microbial.
,
13
, p. i.
4.
Shoesmith
,
J. G.
,
1960
, “
The Measurement of Bacterial Motility
,”
J. Gen. Microbal.
,
22
(
2
), pp.
528
585
.10.1099/00221287-22-2-528
5.
Kim
,
Y.
,
1996
, “
Diffusivity of Bacteria
,”
Korean J. Chem. Eng.
,
13
(
3
), pp.
282
287
.10.1007/BF02705951
6.
Arora
,
S.
,
Bhat
,
V.
, and
Mittal
,
A.
,
2007
, “
Correlating Single Cell Motility With Population Growth Dynamics for Flagellated Bacteria
,”
Biotechnol. Bioeng.
,
97
(
6
), pp.
1644
1649
.10.1002/bit.21372
7.
Wakabayashi
,
K.
,
Ide
,
T.
, and
Kamiya
,
R.
,
2009
, “
Calcium-Dependent Flagellar Motility Activation in Chlamydomonas reinhardtii in Response to Mechanical Agitation
,”
Cell Motil. Cytoskeleton
,
66
(
9
), pp.
736
742
.10.1002/cm.20402
8.
Hansen
,
T. J.
,
Hondzo
,
M.
,
Mashek
,
M. T.
,
Mashek
,
D. G.
, and
Lefebvre
,
P. A.
,
2013
, “
Algal Swimming Velocities Signal Fatty Acid Accumulation
,”
Biotechnol. Bioeng.
,
110
(
1
), pp.
143
152
.10.1002/bit.24619
9.
Rusconi
,
R.
,
Guasto
,
J. S.
, and
Stocker
,
R.
,
2014
, “
Bacterial Transport Suppressed by Fluid Shear
,”
Nat. Phys.
,
10
, pp.
2
7
.10.1038/nphys2883
10.
Amato
,
A.
,
Dell'Aquila
,
G.
,
Musacchia
,
F.
,
Annunziata
,
R.
,
Ugarte
,
A.
,
Maillet
,
N.
,
Carbone
,
A.
,
d'Alcalà
,
M. R.
,
Sanges
,
R.
,
Iudicone
,
D.
, and
Ferrante
,
M. I.
,
2017
, “
Marine Diatoms Change Their Gene Expression Profile When Exposed to Microscale Turbulence Under Nutrient Replete Conditions
,”
Sci. Rep
,
7
(
1
), p.
3826
.10.1038/s41598-017-03741-6
11.
Luchsinger
,
R. H.
,
Bergersen
,
B.
, and
Mitchell
,
J. G.
,
1999
, “
Bacterial Swimming Strategies and Turbulence
,”
Biophys. J.
,
77
(
5
), pp.
2377
2386
.10.1016/S0006-3495(99)77075-X
12.
Schuech
,
R.
, and
Menden‐Deuer
,
S.
,
2014
, “
Going Ballistic in the Plankton: Anisotropic Swimming Behavior of Marine Protists
,”
Limnol. Oceanogr. Fluids Environ.
,
4
, pp.
1
16
.10.1215/21573689-2647998
13.
Sengupta
,
A.
,
Carrara
,
F.
, and
Stocker
,
R.
,
2017
, “
Phytoplankton Can Actively Diversify Their Migration Strategy in Response to Turbulent Cues
,”
Nature
,
543
(
7646
), pp.
555
558
.10.1038/nature21415
14.
Carrara
,
F.
,
Sengupta
,
A.
,
Behrendt
,
L.
,
Vardi
,
A.
, and
Stocker
,
R.
,
2021
, “
Bistability in Oxidative Stress Response Determines the Migration Behavior of Phytoplankton in Turbulence
,”
PNAS
,
118
(
5
), p. e2005944118.
15.
Nguyen
,
M. C.
,
Peerhossaini
,
H.
,
Pashmi
,
E.
,
Salek
,
M.
, and
Jarrahi
,
M.
,
2020
, “
Active Control of Passive and Active Particle Distribution at the Outlet of Double Y-Microchannel Using Pulsatile Flow
,”
ASME J. Fluids Eng.
,
142
(
8
), p.
081208
.10.1115/1.4046851
16.
Vourc'h
,
T.
,
Léopoldès
,
J.
, and
Peerhossaini
,
H.
,
2020
, “
Clustering of Bacteria With Heterogeneous Motility
,”
Phys. Rev. E
,
101
(
2
), p.
022612
.10.1103/PhysRevE.101.022612
17.
Fadlallah
,
H.
,
Jarrahi
,
M.
,
Herbert
,
E.
,
Ferrari
,
R.
,
Mejean
,
A.
, and
Peerhossaini
,
H.
,
2020
, “
Active Fluids: Effects of Hydrodynamic Stress on Growth of Self-Propelled Fluid Particles
,”
J. Appl. Fluid Mech.
,
13
(
2
), pp.
561
570
.10.29252/jafm.13.02.30134
You do not currently have access to this content.