Abstract

The objective of this paper is to investigate the dynamic characteristics of transient cavitating flow over a twisted NACA0009 hydrofoil. The large eddy simulation (LES) approach is selected for the computation of fluid flow and the Zwart model is used for the mass transfer due to cavitation. Moreover, the skin-friction coefficient and boundary-vorticity flux (BVF) are used to study the flow separation. Numerical results show that the attached shear layer separates from the boundary layer and then squeezes to form the separation line under the obstruction of the reentrant jet. The analysis based on the terms of vorticity transport equation demonstrates that vortex stretching and vortex dilatation terms dominate the evolution of the multiscale vortex. Moreover, the secondary shedding induced by the side-entrant jet enhances the instability of partial cavities and the underlying mechanism is comprehensively revealed. Furthermore, the feature of the pressure fluctuation indicates that high pressure generated by the cavity collapse at the tail simultaneously propagates to the leading edge and downstream of the hydrofoil. This enhances the intensity of the reentrant jet and side-entrant jet, promoting occurrences of flow separation near the suction surface and cavity shedding to a certain extent.

References

1.
Goncalves
,
E.
, and
Patella
,
R. F.
,
2009
, “
Numerical Simulation of Cavitating Flows With Homogeneous Models
,”
Comput. Fluids
,
38
(
9
), pp.
1682
1696
.10.1016/j.compfluid.2009.03.001
2.
Long
,
Y.
,
Long
,
X. P.
,
Ji
,
B.
, and
Xing
,
T.
,
2019
, “
Verification and Validation of Large Eddy Simulation of Attached Cavitating Flow Around a Clark-Y Hydrofoil
,”
Int. J. Multiphase Flow
,
115
, pp.
93
107
.10.1016/j.ijmultiphaseflow.2019.03.026
3.
Vasilakis
,
E. S.
,
Kyriazis
,
N.
,
Koukouvinis
,
P.
,
Farhat
,
M.
, and
Gavaises
,
M.
,
2019
, “
Cavitation Induction by Projectile Impacting on a Water Jet
,”
Int. J. Multiphase Flow
,
114
, pp.
128
139
.10.1016/j.ijmultiphaseflow.2019.03.001
4.
Shen
,
T. J.
,
Li
,
X. J.
,
Li
,
L. M.
,
Wang
,
Z. D.
, and
Liu
,
Y. Y.
,
2021
, “
Evaluation of Vorticity Forces in Thermo-Sensitive Cavitating Flow Considering the Local Compressibility
,”
Int. Commun. Heat Mass Transfer
,
120
(
1
), p.
105008
.10.1016/j.icheatmasstransfer.2020.105008
5.
Hosbach
,
M.
,
Gitau
,
S.
,
Sander
,
T.
,
Leuteritz
,
U.
, and
Pfitzner
,
M.
,
2019
, “
Effect of Taper, Pressure and Temperature on Cavitation Extent and Dynamics in Micro-Channels
,”
Exp. Therm. Fluid Sci.
,
108
, pp.
25
38
.10.1016/j.expthermflusci.2019.05.012
6.
Liu
,
Y. Y.
,
Li
,
X. J.
,
Wang
,
W. J.
,
Li
,
L. M.
, and
Huo
,
Y. K.
,
2020
, “
Numerical Investigation on the Evolution of Forces and Energy Features in Thermo-Sensitive Cavitating Flow
,”
Eur. J. Mech./B Fluids
,
84
, pp.
233
249
.10.1016/j.euromechflu.2020.06.011
7.
Li
,
L. M.
,
Hu
,
D. Q.
,
Liu
,
Y. C.
,
Wang
,
B. T.
,
Shi
,
C.
,
Shi
,
J. J.
, and
Xu
,
C.
,
2020
, “
Large Eddy Simulation of Cavitating Flows With Dynamic Adaptive Mesh Refinement Using OpenFOAM
,”
J. Hydrodyn.
,
32
(
2
), pp.
398
409
.10.1007/s42241-019-0041-1
8.
Usta
,
O.
,
Aktas
,
B.
,
Maasch
,
M.
,
Turan
,
O.
,
Mehmet
,
A.
, and
Korkut
,
E.
,
2017
, “
A Study on the Numerical Prediction of Cavitation Erosion for Propellers
,” Symposium of Marine Propulsion (
SMP'17
), Proceedings of the Fifth International Symposium on Marine Propulsors - SMP'17, Helsinki, Finland, June
12
15
.https://strathprints.strath.ac.uk/66109/1/Usta_etal_SMP_2017_A_study_on_the_numerical_prediction_of_cavitation_erosion.pdf
9.
Pham
,
T. M. L.
,
Fruman
,
F.
, and
D
,
H.
,
1999
, “
Investigation of Unsteady Sheet Cavitation and Cloud Cavitation Mechanisms
,”
ASME J. Fluids Eng.
,
121
(
2
), pp.
289
296
.10.1115/1.2822206
10.
Chen
,
Y.
,
Chen
,
X.
,
Li
,
J.
,
Gong
,
Z.
, and
Lu
,
C.
,
2017
, “
Large Eddy Simulation and Investigation on the Flow Structure of the Cascading Cavitation Shedding Regime Around 3D Twisted Hydrofoil
,”
Ocean Eng.
,
129
, pp.
1
19
.10.1016/j.oceaneng.2016.11.012
11.
Tvergaard
,
V.
, and
Legarth
,
B. N.
,
2019
, “
Effects of Anisotropy and Void Shape on Cavitation Instabilities
,”
Int. J. Mech. Sci.
,
152
, pp.
81
87
.10.1016/j.ijmecsci.2018.12.014
12.
Liu
,
M.
,
Zhou
,
L. J.
, and
Wang
,
Z. W.
,
2019
, “
Numerical Investigation of the Cavitation Instability in a Central Jet Pump With a Large Area Ratio at Normal Cavitating Conditions
,”
Int. J. Multiphase Flow
,
116
, pp.
153
163
.10.1016/j.ijmultiphaseflow.2019.04.014
13.
Hayashi
,
S.
, and
Sato
,
K.
,
2014
, “
Unsteady Behavior of Cavitating Waterjet in an Axisymmetric Convergent-Divergent Nozzle: High Speed Observation and Image Analysis Based on Frame Difference Method
,”
J. Flow Control Meas. Visual.
,
02
(
03
), pp.
94
104
.10.4236/jfcmv.2014.23011
14.
Wu
,
X. C.
,
Wang
,
Y. W.
, and
Huang
,
C. G.
,
2016
, “
Effect of Mesh Resolution on Large Eddy Simulation of Cloud Cavitating Flow Around a Three Dimensional Twisted Hydrofoil
,”
Eur. J. Mech. B/Fluids
,
55
, pp.
229
240
.10.1016/j.euromechflu.2015.09.011
15.
Decaix
,
J.
,
Dreyer
,
M.
,
Balarac
,
G.
,
Farhat
,
M.
, and
Münch
,
C.
,
2018
, “
RANS Computations of a Confined Cavitating Tip-Leakage Vortex
,”
Eur. J. Mech./B Fluids
,
67
, pp.
198
210
.10.1016/j.euromechflu.2017.09.004
16.
Ji
,
B.
,
Luo
,
X. W.
,
Wu
,
Y.
,
Peng
,
X.
, and
Duan
,
Y.
,
2013
, “
Numerical Analysis of Unsteady Cavitating Turbulent Flow and Shedding Horse-Shoe Vortex Structure Around a Twisted Hydrofoil
,”
Int. J. Multiphase Flow
,
51
, pp.
33
43
.10.1016/j.ijmultiphaseflow.2012.11.008
17.
Chen
,
Y.
,
Lu
,
C. J.
, and
Wu
,
L.
,
2006
, “
Modeling and Computation of Unsteady Turbulent Cavitation Flows
,”
J. Hydrodyn.
,
18
(
5
), pp.
559
566
.10.1016/S1001-6058(06)60135-2
18.
Cheng
,
H. Y.
,
Bai
,
X. R.
,
Long
,
X. P.
,
Ji
,
B.
,
Peng
,
X. X.
, and
Farhat
,
M.
,
2020
, “
Large Eddy Simulation of the Tip-Leakage Cavitating Flow With an Insight on How Cavitation Influences Vorticity and Turbulence
,”
Appl. Math. Modell.
,
77
, pp.
788
809
.10.1016/j.apm.2019.08.005
19.
Lee
,
J. H.
,
Kim
,
D. H.
, and
Shin
,
Y. H.
,
2018
, “
Hyperbolic Localization of Incipient Tip Vortex Cavitation in Marine Propeller Using Spectral Kurtosis
,”
Mech. Syst. Signal Process.
,
110
, pp.
442
457
.10.1016/j.ymssp.2018.03.026
20.
Peng
,
X. X.
,
Ji
,
B.
,
Cao
,
Y.
,
Xu
,
L.
,
Zhang
,
G.
,
Luo
,
X.
, and
Long
,
X.
,
2016
, “
Combined Experimental Observation and Numerical Simulation of the Cloud Cavitation With U-Type Flow Structures on Hydrofoils
,”
Int. J. Multiphase Flow
,
79
, pp.
10
22
.10.1016/j.ijmultiphaseflow.2015.10.006
21.
Huang
,
B.
,
Qiu
,
S. C.
,
Li
,
X. B.
,
Wu
,
Q.
, and
Wang
,
G. Y.
,
2019
, “
A Review of Transient Flow Structure and Unsteady Mechanism of Cavitating Flow
,”
J. Hydrodyn.
,
31
(
3
), pp.
429
444
.10.1007/s42241-019-0050-0
22.
Kanfoudi
,
H.
,
Bel Hadj Taher
,
A.
, and
Zgolli
,
R.
,
2018
, “
3D Analyze of the Cavitation Mechanism in Turbulent Flow Using Partially-Average Navier Stokes Model Around the Clark-y Hydrofoil
,”
J. Appl. Fluid Mech.
,
11
(
6
), pp.
1637
1649
.10.29252/jafm.11.06.28809
23.
Mohammad
,
H. A.
,
Amini
,
A.
,
Farhat
,
M.
, and
Bensow
,
R.
,
2019
, “
Numerical and Experimental Investigation of Shedding Mechanisms From Leading-Edge Cavitation
,”
Int. J. Multiphase Flow
,
119
, pp.
123
143
.10.1016/j.ijmultiphaseflow.2019.06.010
24.
Huang
,
B.
,
Ducoin
,
A.
, and
Young
,
Y. L.
,
2013
, “
Physical and Numerical Investigation of Cavitating Flows Around a Pitching Hydrofoil
,”
Phys. Fluids
,
25
(
10
), p.
102109
.10.1063/1.4825156
25.
Li
,
X. J.
,
Shen
,
T. J.
,
Li
,
P. C.
,
Guo
,
X. M.
, and
Zhu
,
Z. C.
,
2020
, “
Extended Compressible Thermal Cavitation Model for the Numerical Simulation of Cryogenic Cavitating Flow
,”
Int. J. Hydrogen Energy
,
45
(
16
), pp.
10104
10118
.10.1016/j.ijhydene.2020.01.192
26.
Wang
,
Y.
,
Zhang
,
F.
,
Yuan
,
S.
,
Chen
,
K.
,
Wei
,
X.
, and
Appiah
,
D.
,
2020
, “
Effect of Unrans and Hybrid Rans-Les Turbulence Models on Unsteady Turbulent Flows Inside a Side Channel Pump
,”
ASME J. Fluids Eng.
,
142
(
6
), p.
061503
.10.1115/1.4045995
27.
Liu
,
M.
,
Tan
,
L.
, and
Cao
,
S.
,
2019
, “
Cavitation–Vortex–Turbulence Interaction and One-Dimensional Model Prediction of Pressure for Hydrofoil ALE15 by Large Eddy Simulation
,”
ASME J. Fluids Eng.
,
141
(
2
), p. 021103.10.1115/1.4040502
28.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
29.
Usta
,
O.
, and
Korkut
,
E.
,
2019
, “
Prediction of Cavitation Development and Cavitation Erosion on Hydrofoils and Propellers by Detached Eddy Simulation
,”
Ocean Eng.
,
191
, p.
106512
1.10.1016/j.oceaneng.2019.106512
30.
Kubota
,
A.
,
Kato
,
H.
,
Yamaguchi
,
H.
, and
Maeda
,
M.
,
1989
, “
Unsteady Structure Measurement of Cloud Cavitation on a Foil Section Using Conditional Sampling Techniques
,”
ASME J. Fluids Eng.
,
111
(
2
), pp.
204
210
.10.1115/1.3243624
31.
Zwart
,
P. J.
,
Gerber
,
A. G.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
Proceedings of the Fifth International Conference on Multiphase Flow
,
Yokohama, Japan,
May 30–June 3, Paper No.152. https://www.researchgate.net/publication/306205415_A_two-phase_flow_model_for_predicting_cavitation_dynamics
32.
Frikha
,
S.
,
Coutier-Delgosha
,
O.
, and
Astolfi
,
J. A.
,
2008
, “
Influence of the Cavitation Model on the Simulation of Cloud Cavitation on 2D Foil Section
,”
Int. J. Rotating Mach.
,
2008
, pp.
1
12
.10.1155/2008/146234
33.
Kinzel
,
M. P.
,
Lindau
,
J. W.
, and
Kunz
,
R. F.
,
2018
, “
An Evaluation of CFD Cavitation Models Using Streamline Data
,”
Proceedings of the Tenth International Symposium on Cavitation (CAV2018)
May 14–16, Paper No.
2018
1108
.
34.
Jablonská
,
J.
,
2013
, “
Modelling on Cavitation in a Diffuser With Vortex Generator
,”
Eur. Phys. J. Conferences
,
45
, p.
01045
.10.1051/epjconf/20134501045
35.
Lešnik
,
L.
, and
Biluš
,
I.
,
2019
, “
Simulation of Three-Dimensional Cavitation in Radial Divergent Test Section Using Different Mass Transfer Models
,”
Math. Model.
,
3
(
1
), pp.
21
24
.https://stumejournals.com/journals/mm/2019/1/21
36.
Jollet
,
S.
,
Willeke
,
T.
, and
Dinkelacker
,
F.
,
2012
, “
Comparison of Various Models for Transient Nozzle Flow Simulations Including Time-Resolved Needle Lift
,”
12th Triennial International Conference on Liquid Atomization and Spray Systems (ICLASS)
,
Heidelberg, Germany
.
37.
Yin
,
T. Y.
,
Pavesi
,
G.
,
Pei
,
J.
, and
Yuan
,
S. Q.
,
2021
, “
Numerical Investigation of Unsteady Cavitation Around a Twisted Hydrofoil
,”
Int. J. Multiphase Flow
,
135
, p.
103506
.10.1016/j.ijmultiphaseflow.2020.103506
38.
Coutier
,
D. O.
,
Reboud
,
J. L.
, and
Delannoy
,
Y.
,
2003
, “
Numerical Simulation of the Unsteady Behaviour of Cavitating Flows
,”
Int. J. Numer. Methods Fluids
,
42
(
5
), pp.
527
548
.https://doi.org/10.1002/fld.530
39.
Dittakavi
,
N.
,
Chunekar
,
A.
, and
Frankel
,
S.
, and.,
2010
, “
Large Eddy Simulation of Turbulent-Cavitation Interactions in a Venturi Nozzle
,”
ASME J. Fluids Eng.
,
132
(
12
), p.
121301
.10.1115/1.4001971
40.
Foeth
,
E. J.
,
2008
, “
The Structure of Three-Dimensional Sheet Cavitation
,”
Mechanical Maritime and Materials Engineering
,
Delft University of Technology
,
Wageningen, The Netherlands
.
41.
Lighthill
,
M. J.
,
1963
,
Introduction to Boundary Layer Theory in Laminar Boundary Layer
,
Oxford University Press
,
Oxford
, UK, pp.
46
113
.
42.
Zhang
,
S. F.
,
Li
,
X. J.
,
Hu
,
B.
,
Liu
,
Y.
, and
Zhu
,
Z. C.
,
2019
, “
Numerical Investigation of Attached Cavitating Flow in Thermo-Sensitive Fluid With Special Emphasis on Thermal Effect and Shedding Dynamics
,”
Int. J. Hydrogen Energy
,
44
(
5
), pp.
3170
3184
.10.1016/j.ijhydene.2018.11.224
43.
Sun
,
T.
,
Wang
,
Z.
,
Zou
,
L.
, and
Wang
,
H.
,
2020
, “
Numerical Investigation of Positive Effects of Ventilated Cavitation Around a NACA66 Hydrofoil
,”
Ocean Eng.
,
197
, p.
106831
.10.1016/j.oceaneng.2019.106831
44.
Pokhrel
,
P. R.
, and
Pudasaini
,
S. P.
,
2020
, “
Stream Function - Vorticity Formulation of Mixture Mass Flow
,”
Int. J. Non-Linear Mech.
,
121
, p.
103317
.10.1016/j.ijnonlinmec.2019.103317
45.
Hunt
,
J.
,
Wray
,
A.
, and
Moin
,
P.
,
1988
, “
Eddies, Stream, and Convergence Zones in Turbulent Flows
,”
Proceedings of the Summer Program
, NASA Ames/Stanford University, San Francisco, CA, pp.
193
207
.
46.
Naidji
,
B.
,
Hallez
,
L.
,
Taouil
,
A. E.
,
Rebetez
,
M.
, and
Hihn
,
J. Y.
,
2019
, “
Influence of Pressure on Ultrasonic Cavitation Activity in Room Temperature Ionic Liquids. An Electrochemical Study
,”
Ultrason. Sonochem.
,
54
, pp.
129
134
.10.1016/j.ultsonch.2019.02.007
47.
Budich
,
B.
,
Schmidt
,
S.
, and
Adams
,
N.
,
2018
, “
Numerical Simulation and Analysis of Condensation Shocks in Cavitating Flow
,”
J. Fluid Mech.
,
838
, pp.
759
813
.10.1017/jfm.2017.882
You do not currently have access to this content.