Abstract

This work addresses the estimation of two interrelated parameters of the fluid flow in pipes. First, a numerical and experimental evaluation of some proposed methods to compute the friction factor in turbulent regime is presented. Special attention is given to an explicit solution obtained through the Lambert W-function. Subsequently, a method to estimate the roughness coefficient using nonlinear optimization techniques is proposed, which then allows determining the friction factor from it. Numerical tests were performed for a wide range of operating points of a pipeline. In order to validate the proposed approach, experimental analysis was carried out on a pipeline pilot-plant. The results show the applicability and effectiveness of the proposed method.

References

1.
C.
,
Verde
, and
L.
Torres
, eds.,
2017
,
Modeling and Monitoring of Pipelines and Networks: Advanced Tools for Automatic Monitoring and Supervision of Pipelines
(Applied Condition Monitoring), Vol.
7
,
Springer International Publishing
,
Berlin
.
2.
Puig
,
V.
,
Ocampo-Martinez
,
C.
,
Pérez
,
R.
,
Cembrano
,
G.
,
Quevedo
,
J.
, and
Escobet
,
T.
,
2017
,
Real-Time Monitoring and Operational Control of Drinking-Water Systems
,
Springer
,
Berlin
.
3.
Torres
,
L.
, and
Verde
,
C.
,
2018
, “
Nonlinear Estimation of a Power Law for the Friction in a Pipeline
,”
Second Conference on Modelling, Identification and Control of Nonlinear Systems (MICNON 2018), Guadalajara, Mexico, June, IFAC
, pp.
67
72
.
4.
Santos-Ruiz
,
I.
,
Bermúdez
,
J.
,
López-Estrada
,
F.
,
Puig
,
V.
,
Torres
,
L.
, and
Delgado-Aguiñaga
,
J.
,
2018
, “
Online Leak Diagnosis in Pipelines Using an Ekf-Based and Steady-State Mixed Approach
,”
Control Eng. Pract.
,
81
, pp.
55
64
.10.1016/j.conengprac.2018.09.006
5.
Weisbach
,
J.
,
1845
, “
Lehrbuch der Ingenieur-und Maschinen
,”
Mechanik
,
1
, p.
434
.https://archive.org/details/lehrbuchderinge06weisgoog
6.
Trinh
,
K. T.
,
2010
, “
On the Blasius Correlation for Friction Factors
,” arXiv preprint
arXiv:1007.2466
.https://arxiv.org/abs/1007.2466
7.
Von Bernuth
,
R.
,
1990
, “
Simple and Accurate Friction Loss Equation for Plastic Pipe
,”
J. Irrig. Drain. Eng.
,
116
(
2
), pp.
294
298
.10.1061/(ASCE)0733-9437(1990)116:2(294)
8.
Swamee
,
P. K.
, and
Jain
,
A. K.
,
1976
, “
Explicit Equations for Pipe-Flow Problems
,”
J. Hydraulics Div.
,
102
(
5
), pp.
657
664
.
9.
Haaland
,
S. E.
,
1983
, “
Simple and Explicit Formulas for the Friction Factor in Turbulent Pipe Flow
,”
ASME J. Fluids Eng.
,
105
(
1
), pp.
89
90
.10.1115/1.3240948
10.
Serghides
,
T. K.
,
1984
, “
Estimate Friction Factor Accurately
,”
Chem. Eng.
,
91
(
5
), pp.
63
64
.
11.
Santos-Ruiz
,
I.
,
López-Estrada
,
F.-R.
,
Puig
,
V.
, and
Valencia-Palomo
,
G.
,
2020
, “
Simultaneous Optimal Estimation of Roughness and Minor Loss Coefficients in a Pipeline
,”
Math. Comput. Appl.
,
25
(
3
), p.
56
.10.3390/mca25030056
12.
Zigrang
,
D.
, and
Sylvester
,
N.
,
1985
, “
A Review of Explicit Friction Factor Equations
,”
ASME J. Energy Resour. Technol.
,
107
(
2
), pp.
280
283
.10.1115/1.3231190
13.
Y Ild Ir Im
,
G.
,
2009
, “
Computer-Based Analysis of Explicit Approximations to the Implicit Colebrook–White Equation in Turbulent Flow Friction Factor Calculation
,”
Adv. Eng. Software
,
40
(
11
), pp.
1183
1190
.10.1016/j.advengsoft.2009.04.004
14.
Brkić
,
D.
,
2011
, “
Review of Explicit Approximations to the Colebrook Relation for Flow Friction
,”
J. Pet. Sci. Eng.
,
77
(
1
), pp.
34
48
.10.1016/j.petrol.2011.02.006
15.
Genić
,
S.
,
Arandelović
,
I.
,
Kolendić
,
P.
,
Jarić
,
M.
,
Budimir
,
N.
, and
Genić
,
V.
,
2011
, “
A Review of Explicit Approximations of Colebrook's Equation
,”
FME Trans.
,
39
(
2
), pp.
67
71
. https://www.mas.bg.ac.rs/_media/istrazivanje/fme/vol39/2/04_mjaric.pdf
16.
Zeghadnia
,
L.
,
Robert
,
J. L.
, and
Achour
,
B.
,
2019
, “
Explicit Solutions for Turbulent Flow Friction Factor: A Review, Assessment and Approaches Classification
,”
Ain Shams Eng. J.
,
10
(
1
), pp.
243
252
.10.1016/j.asej.2018.10.007
17.
More
,
A. A.
,
2006
, “
Analytical Solutions for the Colebrook and White Equation and for Pressure Drop in Ideal Gas Flow in Pipes
,”
Chem. Eng. Sci.
,
61
(
16
), pp.
5515
5519
.10.1016/j.ces.2006.04.003
18.
Brkić
,
D.
,
2012
, “
Lambert W Function in Hydraulic Problems
,”
Math. Balkanica
,
26
(
3
), pp.
285
292
.10.31219/osf.io/n3p6r
19.
Brkić
,
D.
,
2011
, “
W Solutions of the CW Equation for Flow Friction
,”
Appl. Math. Lett.
,
24
(
8
), pp.
1379
1383
.10.1016/j.aml.2011.03.014
20.
Brkić
,
D.
, and
Praks
,
P.
,
2018
, “
Accurate and Efficient Explicit Approximations of the Colebrook Flow Friction Equation Based on the Wright ω-Function
,”
Mathematics
,
7
(
1
), p.
34
.10.3390/math7010034
21.
Bermúdez
,
J.-R.
,
López-Estrada
,
F.-R.
,
Besançon
,
G.
,
Valencia-Palomo
,
G.
,
Torres
,
L.
, and
Hernández
,
H.-R.
,
2018
, “
Modeling and Simulation of a Hydraulic Network for Leak Diagnosis
,”
Math. Comput. Appl.
,
23
(
4
), p.
70
.10.3390/mca23040070
22.
Bermúdez
,
J. R.
,
Santos-Ruiz
,
I.
,
López-Estrada
,
F. R.
,
Torres
,
L.
, and
Puig
,
V.
,
2017
, “
Diseño y Modelado Dinámico de Una Planta Piloto Para Detección de Fugas Hidráulicas (Design and Dynamic Modeling of a Pilot Plant for Hydraulic Leak Detection)
,”
Congreso Nacional de Control Automático CNCA 2017
, Vol.
1
, Asociación Mexicana de Control Automático, pp.
2
7
.
23.
Pérez-Pérez
,
E. J.
,
López-Estrada
,
F. R.
,
Valencia-Palomo
,
G.
,
Torres
,
L.
,
Puig
,
V.
, and
Mina-Antonio
,
J. D.
,
2021
, “
Leak Diagnosis in Pipelines Using a Combined Artificial Neural Network Approach
,”
Control Eng. Pract.
,
107
, p.
104677
.10.1016/j.conengprac.2020.104677
24.
Brown
,
G. O.
,
2002
,
The History of the Darcy-Weisbach Equation for Pipe Flow Resistance
,
ASCE
,
Washington, DC
, pp.
34
43
.
25.
Saldarriaga
,
J.
,
2016
,
Hidráulica de Tuberías
, 3rd ed.,
Alfaomega
,
Mexico City, Mexico
.
26.
Rouse
,
H.
,
1943
, “
Evaluation of Boundary Roughness
,”
Proceedings Second Hydraulics Conference
, Bulletin No. 27.
27.
Von Kármán
,
T.
,
1930
, “
Mechanische Änlichkeit und Turbulenz
,”
Nachrichten Von Der Gesellschaft Der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse
, Math.-Phys. Kl., Göttingen, Germany, pp.
58
76
.
28.
Colebrook
,
C. F.
,
White
,
C. M.
, and
Taylor
,
G. I.
,
1937
, “
Experiments With Fluid Friction in Roughened Pipes
,”
Proc. R. Soc. London. Ser., A
,
161
(
906
), pp.
367
381
.10.1098/RSPA.1937.0150
29.
Colebrook
,
C. F.
,
1939
, “
Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws
,”
J. Inst. Civ. Eng.
,
11
(
4
), pp.
133
156
.10.1680/ijoti.1939.13150
30.
Moody
,
L. F.
,
1944
, “
Friction Factors for Pipe Flow
,”
Trans. ASME
,
66
, pp.
671
684
. http://www.ipt.ntnu.no/~asheim/TPG4135/Moody.pdf
31.
Clamond
,
D.
,
2009
, “
Efficient Resolution of the Colebrook Equation
,”
Ind. Eng. Chem. Res.
,
48
(
7
), pp.
3665
3671
.10.1021/ie801626g
32.
Dahlquist
,
G.
, and
Bjorck
,
A.
,
2008
,
Numerical Methods in Scientific Computing
, Vol.
103
,
SIAM
,
Philadelphia, PA
.
33.
Praks
,
P.
, and
Brkić
,
D.
,
2018
, “
Advanced Iterative Procedures for Solving the Implicit Colebrook Equation for Fluid Flow Friction
,”
Adv. Civ. Eng.
,
2018
, pp.
1
18
.10.1155/2018/5451034
34.
Brkić
,
D.
,
2017
, “
Solution of the Implicit Colebrook Equation for Flow Friction Using Excel
,”
Spreadsheets Educ.
,
10
(
2
), pp.
1
12
.
35.
Olivares
,
A.
,
Guerra
,
R.
,
Alfaro
,
M.
,
Notte-Cuello
,
E.
, and
Puentes
,
L.
,
2019
, “
Experimental Evaluation of Correlations Used to Calculate Friction Factor for Turbulent Flow in Cylindrical Pipes
,”
Rev. Int. Métodos Numér. Cálc. Diseño Ing.
,
35
(
1
), p.
15
.10.23967/j.rimni.2019.01.001
36.
Jain
,
P.
,
2007
, “
Steffensen Type Methods for Solving Non-Linear Equations
,”
Appl. Math. Comput.
,
194
(
2
), pp.
527
533
.10.1016/j.amc.2007.04.087
37.
Ćojbašić
,
Ž.
, and
Brkić
,
D.
,
2013
, “
Very Accurate Explicit Approximations for Calculation of the Colebrook Friction Factor
,”
Int. J. Mech. Sci.
,
67
, pp.
10
13
.10.1016/j.ijmecsci.2012.11.017
38.
Brkić
,
D.
, and
Ćojbašić
,
Ž.
,
2017
, “
Evolutionary Optimization of Colebrook's Turbulent Flow Friction Approximations
,”
Fluids
,
2
(
2
), p.
15
.10.3390/fluids2020015
39.
Buzzelli
,
D.
,
2008
, “
Calculating Friction in One Step
,”
Mach. Des.
,
80
(
12
), pp.
54
55
. https://www.machinedesign.com/archive/article/21817480/calculating-friction-in-one-step
40.
Romeo
,
E.
,
Royo
,
C.
, and
Monzón
,
A.
,
2002
, “
Improved Explicit Equations for Estimation of the Friction Factor in Rough and Smooth Pipes
,”
Chem. Eng. J.
,
86
(
3
), pp.
369
374
.10.1016/S1385-8947(01)00254-6
41.
Praks
,
P.
, and
Brkic
,
D.
,
2020
, “
Review of New Flow Friction Equations: Constructing Colebrook Explicit Correlations Accurately
,” arXiv preprint
arXiv:2005.07021
.https://arxiv.org/abs/2005.07021
42.
Zigrang
,
D.
, and
Sylvester
,
N.
,
1982
, “
Explicit Approximations to the Solution of Colebrook's Friction Factor Equation
,”
AIChE J.
,
28
(
3
), pp.
514
515
.10.1002/aic.690280323
43.
Keady
,
G.
,
1998
, “
Colebrook-White Formula for Pipe Flows
,”
J. Hydraulic Eng.
,
124
(
1
), pp.
96
97
.10.1061/(ASCE)0733-9429(1998)124:1(96)
44.
Corless
,
R. M.
,
Gonnet
,
G. H.
,
Hare
,
D. E.
,
Jeffrey
,
D. J.
, and
Knuth
,
D. E.
,
1996
, “
On the Lambert W Function
,”
Adv. Comput. Math.
,
5
(
1
), pp.
329
359
.10.1007/BF02124750
45.
Corless
,
R. M.
,
Jeffrey
,
D. J.
, and
Knuth
,
D. E.
,
1997
, “
A Sequence of Series for the Lambert W Function
,”
Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC)
, Vol.
97
, Kihei, Maui, HI, pp.
197
204
.
46.
Rollmann
,
P.
, and
Spindler
,
K.
,
2015
, “
Explicit Representation of the Implicit Colebrook-White Equation
,”
Case Stud. Therm. Eng.
,
5
pp.
41
47
.10.1016/j.csite.2014.12.001
47.
Biberg
,
D.
,
2017
, “
Fast and Accurate Approximations for the Colebrook Equation
,”
ASME J. Fluids Eng.
,
139
(
3
), p.
031401
.10.1115/1.4034950
48.
Winitzki
,
S.
,
2003
, “
Uniform Approximations for Transcendental Functions
,”
Third International Conference on Computational Science and Its Applications (ICCSA 2003)
,
V.
Kumar
,
M. L.
Gavrilova
,
C. J. K.
Tan
, and
P.
L'Ecuyer
, eds.,
Springer
,
Berlin
, pp.
780
789
.
49.
Gander
,
W.
,
1985
, “
On Halley's Iteration Method
,”
Am. Math. Mon.
,
92
(
2
), pp.
131
134
.10.1080/00029890.1985.11971554
50.
Veberič
,
D.
,
2012
, “
Lambert W Function for Applications in Physics
,”
Comput. Phys. Commun.
,
183
(
12
), pp.
2622
2628
.10.1016/j.cpc.2012.07.008
51.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
,
2007
,
Numerical Recipes: The Art of Scientific Computing
, 3rd ed.,
Cambridge University Press
,
Cambridge, UK
.
52.
Zuras
,
D.
,
Cowlishaw
,
M.
,
Aiken
,
A.
,
Applegate
,
M.
,
Bailey
,
D.
,
Bass
,
S.
,
Bhandarkar
,
D.
,
Bhat
,
M.
,
Bindel
,
D.
, and
Boldo
,
S.
,
2008
, “
IEEE Standard for Floating-Point Arithmetic
,”
IEEE, New York, Standard No. 754-2008
.
53.
Sonnad
,
J. R.
, and
Goudar
,
C. T.
,
2004
, “
Constraints for Using Lambert W Function-Based Explicit Colebrook-White Equation
,”
J. Hydraulic Eng.
,
130
(
9
), pp.
929
931
.10.1061/(ASCE)0733-9429(2004)130:9(929)
54.
Brkić
,
D.
,
2012
, “
Comparison of the Lambert W-Function Based Solutions to the Colebrook Equation
,”
Eng. Comput.
,
29
(
6
), pp.
617
630
.10.1108/02644401211246337
55.
Santos-Ruiz
,
I.
,
López-Estrada
,
F. R.
, and
Puig
,
V.
,
2018
, “
Friction and Roughness
,”
Zenodo
.10.5281/zenodo.1481562
56.
Echávez
,
G.
,
1997
, “
Increase in Losses Coefficient With Age for Small Diameter Pipes
,”
J. Hydraulic Eng.
,
123
(
2
), pp.
157
159
.10.1061/(ASCE)0733-9429(1997)123:2(157)
57.
Powell
,
M. J.
,
1968
, “
A Fortran Subroutine for Solving Systems of Nonlinear Algebraic Equations
,” Atomic Energy Research Establishment, Harwell, UK, Report No. AERE-R-5947.
58.
Coleman
,
T. F.
, and
Li
,
Y.
,
1996
, “
An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds
,”
SIAM J. Optim.
,
6
(
2
), pp.
418
445
.10.1137/0806023
59.
Marquardt
,
D. W.
,
1963
, “
An Algorithm for Least-Squares Estimation of Nonlinear Parameters
,”
J. Soc. Ind. Appl. Math.
,
11
(
2
), pp.
431
441
.10.1137/0111030
60.
Moré
,
J. J.
,
1978
, “
The Levenberg-Marquardt Algorithm: Implementation and Theory
,”
Numerical Analysis
,
Springer,
Berlin, pp.
105
116
.
61.
Santos-Ruiz
,
I.
,
López-Estrada
,
F. R.
, and
Puig
,
V.
,
2019
, “
Estimation of Some Physical Properties of Water as a Function of Temperature
,”
Zenodo
.10.5281/zenodo.2595272
You do not currently have access to this content.