Abstract

It has been observed in literature that for unsteady flow conditions the one-to-one relationships between flow depth, cross-sectional averaged velocity, and frictional resistance as determined from steady uniform flow cases may not be appropriate for these more complex flow systems. Thus, a general friction resistance formula needs to be modified through the addition of new descriptive terms to account for flow unsteadiness, in order to eliminate errors due to uniform and steady-flow assumptions. An extended Chezy formula incorporating both time and space partial derivatives of hydraulic parameters was developed using dimensional analysis to investigate the relationship between flow unsteadiness and friction resistance. Results show that the proposed formula performs better than the traditional Chezy formula for simulating real hydrograph cases whereby both formula coefficients are individually identified for each flood event and coefficients are predetermined using other flood events as calibration cases. Although the extended Chezy formula as well as the original Chezy formula perform worse with the increasing degree of flow unsteadiness, its results are less dramatically affected by unsteadiness intensity, thereby improving estimations of flood routing. As a result, it tends to perform much better than traditional Chezy formula for severe flood events. Under more complex conditions whereby peak flooding events may occur predominantly under unsteady flow, the extended Chezy model may provide as a valuable tool for researchers, practitioners, and water managers for assessing and predicting impacts for flooding and for the development of more appropriate mitigation strategies and more accurate risk assessments.

References

1.
Fan
,
J.
,
Wang
,
C. D.
,
Guan
,
G. H.
, and
Cui
,
W.
,
2006
, “
Study on the Hydraulic Reaction of Unsteady Flows in Open Channel
,”
Adv. Water Sci.
,
17
(
1
), pp.
55
60
.skxjz.nhri.cn/en/article/id/866
2.
Yen
,
B. C.
,
2002
, “
Open Channel Flow Resistance
,”
J. Hydraulic Eng.
,
128
(
1
), pp.
20
39
.10.1061/(ASCE)0733-9429(2002)128:1(20)
3.
Graf
,
W. H.
, and
Song
,
T.
,
1995
, “
Bed-shear stress in non-uniform and unsteady open channel flows
,”
J. Hydraulic Res.
,
33
(
5
), pp.
699
704
.10.1080/00221689509498565
4.
Tu
,
H. Z.
, and
Graf
,
W. H.
,
1993
, “
Friction in Unsteady Open-Channel Flow Over Gravel Beds
,”
J. Hydraulic Res.
,
31
(
1
), pp.
99
110
.10.1080/00221689309498863
5.
Li
,
L.
,
Jiang
,
M.
, and
Liao
,
H.
,
2010
, “
Predicting Roughness Coefficient for Natural Mountain River Channel at High Stage Based on Field Data
,”
Disaster Adv.
,
3
(
4
), pp.
187
193
.
6.
Ghimire
,
B.
, and
Deng
,
Z. Q.
,
2011
, “
Event Flow Hydrograph-Based Method for Shear Velocity Estimation
,”
J. Hydraulic Res.
,
49
(
2
), pp.
272
275
.10.1080/00221686.2011.552463
7.
Zhang
,
X.
,
Bao
,
W.
,
Qu
,
S.
, and
Yu
,
Z.
,
2012
, “
One-Dimensional Hydrodynamic Model Accounting for Tidal Effect
,”
Hydrology Res.
,
43
(
1–2
), pp.
113
122
.10.2166/nh.2011.114
8.
Buckingham
,
E.
,
1914
, “
On Physically Similar Systems; Illustrations of the Use of Dimensional Equations
,”
Phys. Rev.
,
4
(
4
), pp.
345
376
.10.1103/PhysRev.4.345
9.
Bluman
,
G. W.
, and
Anco
,
S. C.
,
2002
,
Symmetry and Integration Methods for Differential Equations
,
Springer-Verlag,
New York.
10.
Hughes
,
S. A.
,
1993
,
Physical Models and Laboratory Techniques in Coastal Engineering
,
World Scientific Publishing Co. Pte. Ltd.
,
Singapore
.
11.
Sedov
,
L. I.
,
1982
,
Similarity and Dimensional Methods in Mechanics
,
Mir Publishers
,
Moscow, Russia
.
12.
Jeffrey
,
D. J.
, and
Sherwood
,
J. D.
,
1980
, “
Streamline Patterns and Eddies in low-Reynolds-Number Flow
,”
J. Fluid Mech.
,
96
(
2
), pp.
315
334
.10.1017/S0022112080002145
13.
Azinfar
,
H.
,
2010
, “
Flow Resistance and Associated Backwater Effect Due to Spur Dikes in Open Channels
,” Ph.D. thesis,
Department of Civil and Geological Engineering, University of Saskatchewan
,
Saskatoon, Canada
.
14.
Traver
,
R. G.
, and
Miller
,
A. C.
,
1987
, “
Modeling Unsteady One Dimensional Open Channel Flow Using the Slope Friction Form of the Saint-Venant Equations
,”
Proc., Hydraulic Eng.
, pp.
770
775
.cedb.asce.org/CEDBsearch/record.jsp?dockey=0053420
15.
Yalin
,
M. S.
,
1971
,
Theory of Hydraulic Models
, The
Macmillan Press LTD
,
London, UK
.
16.
Evans
,
J. H.
,
1972
, “
Dimensional Analysis and the Buckingham Pi Theorem
,”
Am. J. Phys.
,
40
(
12
), pp.
1815
1822
.10.1119/1.1987069
17.
Busari
,
A. O.
, and
Li
,
C. W.
,
2015
, “
A Hydraulic Roughness Model for Submerged Flexible Vegetation With Uncertainty Estimation
,”
J. Hydro-Environment Res.
,
9
(
2
), pp.
268
280
.10.1016/j.jher.2014.06.005
18.
Yeh
,
W. G.
,
1986
, “
Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem
,”
Water Resour. Res.
,
22
(
2
), pp.
95
108
.10.1029/WR022i002p00095
19.
Aronica
,
G.
,
Hankin
,
B.
, and
Beven
,
K.
,
1998
, “
Uncertainty and Equifinality in Calibrating Distributed Roughness Coefficients in a Flood Propagation Model With Limited Data
,”
Adv. Water Resour.
,
22
(
4
), pp.
349
365
.10.1016/S0309-1708(98)00017-7
20.
Khatibi
,
R. H.
,
Williams
,
J. J. R.
, and
Wormleaton
,
P. R.
,
1997
, “
Identification Problem of Open-Channel Friction Parameters
,”
J. Hydraulic Eng.
,
123
(
12
), pp.
1078
553
.10.1061/(ASCE)0733-9429(1997)123:12(1078)
21.
Zeng
,
Y.
, and
Huai
,
W.
,
2009
, “
Application of Artificial Neural Network to Predict the Friction Factor of Open Channel Flow
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
5
), pp.
2373
2378
.10.1016/j.cnsns.2008.06.020
22.
Shi
,
P.
,
Zhou
,
M.
,
Qu
,
S.
,
Chen
,
X.
,
Qiao
,
X.
,
Zhang
,
Z.
, and
Ma
,
X.
,
2013
, “
Testing a Conceptual Lumped Model in Karst Area, Southwest China
,”
J. Appl. Math.
,
2013
(
2
), pp.
1
10
.10.1155/2013/827980
23.
Leuthold
,
R. M.
,
1975
, “
On the Use of Theil's Inequality Coefficients
,”
Am. J. Agric. Econ.
,
57
(
2
), pp.
344
346
.10.2307/1238512
24.
Moriasi
,
D. N.
,
Arnold
,
J. G.
,
Van Liew
,
M. W.
,
Bingner
,
R. L.
,
Harmel
,
R. D.
, and
Veith
,
T. L.
,
2007
, “
Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations
,”
Trans. Asabe
,
50
(
3
), pp.
885
900
.10.13031/2013.23153
25.
Venutelli
,
M.
,
2011
, “
Analysis of Dynamic Wave Model for Unsteady Flow in an Open Channel
,”
J. Hydraulic Eng.
,
137
(
9
), pp.
1072
1078
.10.1061/(ASCE)HY.1943-7900.0000405
26.
Li
,
S. L.
,
Shi
,
H. R.
,
Xue
,
W. Y.
, and
Huai
,
W. X.
,
2015
, “
United Friction Resistance in Open Channel Flows
,”
J. Hydrodyn., Ser. B
,
27
(
3
), pp.
469
472
.10.1016/S1001-6058(15)60506-6
27.
Gergov
,
G.
,
1971
, “
Determination of the Loop Disharge Rating Curve for Flood Wave Propagation
,”
J. Hydraulic Res.
,
9
(
3
), pp.
309
319
.10.1080/00221687109500357
28.
Mrokowska
,
M. M.
,
Rowiński
,
P. M.
, and
Kalinowska
,
M. B.
,
2014
, “
Experimental Study of Friction Slope in Unsteady Non-Unform Flow in Rectangular Channel
,” 3rd IAHR
Europe Congress
, Book of Proceedings, Porto, Portugal.
29.
Mrokowska
,
M. M.
,
Rowiński
,
P. M.
, and
Kalinowska
,
M. B.
,
2015
, “
A Methodological Approach of Estimating Resistance to Flow Under Unsteady Flow Conditions
,”
Hydrology Earth Syst. Sci.
,
19
(
12
), pp.
4041
4053
.10.5194/hess-19-4041-2015
30.
Jayaraman
,
V. V.
,
1970
, “
Resistance Studies on Smooth Open Channels
,”
J. Hydraulics Div.
,
96
, pp.
2667
2668
.
31.
Strupczewski
,
W. G.
, and
Szymkiewicz
,
R.
,
1997
, “
Analysis of Paradoxes Arising From the Chézy Formula With Constant Roughness: I. Depth-Discharge Curve
,”
Hydrological Sci. J.
,
42
((
5
), pp.
781
781.
10.1080/02626669609491537
32.
Hameed
,
L. K.
, and
Ali
,
S. T.
,
2013
, “
Estimating of Manning's Roughness Coefficient for Hilla River Through Calibration Using HEC-RAS Model
,”
Jordan J. Civ. Eng.
,
7
(
1
), pp.
44
53.
https://jjce.just.edu.jo/issues/paper.php?p=2455.pdf
33.
Serede
,
I. J.
,
2015
, “
Calibration of Channel Roughness Coefficient for Thiba Main Canal Reach in Mwea Irrigation Scheme, Kenya
,”
Hydrology
,
3
(
6
), pp.
55
65
.10.11648/j.hyd.20150306.11
34.
Paris
,
A.
,
Paiva
,
R. D. D.
,
Silva
,
J. S. D.
,
Moreira
,
D. M.
,
Calmant
,
S.
,
Garambois
,
P. A.
,
Collischonn
,
W.
,
Bonnet
,
M. P.
, and
Seyler
,
F.
,
2016
, “
Stage‐Discharge Rating Curves Based on Satellite Altimetry and Modeled Discharge in the Amazon Basin
,”
Water Resour. Res.
,
52
(
5
), pp.
3787
3814
.10.1002/2014WR016618
35.
Boulomytis
,
V. T. G.
,
Zuffo
,
A. C.
,
Filho
,
J. G. D.
, and
Imteaz
,
M. A.
,
2017
, “
Estimation and Calibration of Manning's Roughness Coefficients for Ungauged Watersheds on Coastal Floodplains
,”
Int. J. River Basin Manage.
,
15
(
2
), pp.
199
29
.10.1080/15715124.2017.1298605
36.
Brown
,
F. T.
,
1968
, “
Discussion: “Frequency Dependent Friction in Transient Pipe Flow” (Zielke, W., 1968, ASME J. Basic Eng., 90, pp. 109–115)
,”
ASME J. Fluids Eng.
,
90
(
3
), p.
413
.10.1115/1.3605127
37.
Szymkiewicz
,
R.
,
2001
, “
Developments in Unsteady Pipe Flow Friction Modelling
,”
J. Hydraulic Res.
,
39
(
3
), pp.
249
257
.10.1080/00221680209499910
38.
Ghidaoui
,
M. S.
,
Zhao
,
M.
,
Mcinnis
,
D. A.
, and
Axworthy
,
D. H.
,
2005
, “
A Review of Water Hammer Theory and Practice
,”
ASME Appl. Mech. Rev.
,
58
(
1
), pp.
49
76
.10.1115/1.1828050
39.
Pezzinga
,
G.
,
2009
, “
Local Balance Unsteady Friction Model
,”
J. Hydraulic Eng.
,
135
(
1
), pp.
45
56
.10.1061/(ASCE)0733-9429(2009)135:1(45)
40.
Brunone
,
B.
,
Golia
,
U. M.
, and
Greco
,
M.
,
1991
, “
Some Remarks on the Momentum Equation for Fast Transients
,”
Meeting of Hydraulic Transients With Column Separation
, Spain, February.
41.
Vítkovský
,
J. P.
,
Bergant
,
A.
,
Simpson
,
A. R.
, and., and
Lambert
,
M. F.
,
2006
, “
Closure to “Systematic Evaluation of One-Dimensional Unsteady Friction Models in Simple Pipelines
,”
J. Hydraulic Eng.
,
132
(
7
), pp.
696
708
.10.1061/(ASCE)0733-9429(2006)132:7(696)
42.
Bao
,
W. M.
,
Zhou
,
J. W.
,
Xiang
,
X. H.
,
Jiang
,
P.
, and
Bao
,
M. X.
,
2018
, “
A Hydraulic Friction Model for One-Dimensional Unsteady Channel Flows With Experimental Demonstration
,”
Water
,
10
(
1
), p.
43
.10.3390/w10010043
43.
Szymkiewicz
,
R.
, and
Mitosek
,
M.
,
2007
, “
Numerical Aspects of Improvement of the Unsteady Pipe Flow Equations
,”
Int. J. Numer. Methods Fluids
,
55
(
11
), pp.
1039
1058
.10.1002/fld.1507
You do not currently have access to this content.